Interval Exchange Transformations with Vanishing Sah–Arnoux–Fathi Invariant
Informatics and Automation, Geometry, Topology, and Mathematical Physics, Tome 325 (2024), pp. 277-296 Cet article a éte moissonné depuis la source Math-Net.Ru

Voir la notice de l'article

The paper is focused on the key ergodic properties (minimality, unique ergodicity, and weak mixing) of interval exchange transformations (IETs) with vanishing Sah–Arnoux–Fathi (SAF) invariant. The lengths of intervals of this kind of IETs satisfy some nontrivial rational relations; therefore, one cannot apply the classical results by M. Keane, H. Masur, W. Veech, and others to examine their ergodic properties, so dealing with such maps requires the use of new tools. In the present paper we apply some advanced methods of symbolic dynamics to construct the first examples of weakly mixing pseudo-Anosov foliations on orientable surfaces such that the SAF invariant of the corresponding IETs vanishes. The paper also contains a short survey of the known results and presents the statements of several open problems and challenging conjectures.
Mots-clés : interval exchange transformations
Keywords: mixing, measured foliations.
@article{TRSPY_2024_325_a14,
     author = {A. S. Skripchenko},
     title = {Interval {Exchange} {Transformations} with {Vanishing} {Sah{\textendash}Arnoux{\textendash}Fathi} {Invariant}},
     journal = {Informatics and Automation},
     pages = {277--296},
     year = {2024},
     volume = {325},
     language = {ru},
     url = {http://geodesic.mathdoc.fr/item/TRSPY_2024_325_a14/}
}
TY  - JOUR
AU  - A. S. Skripchenko
TI  - Interval Exchange Transformations with Vanishing Sah–Arnoux–Fathi Invariant
JO  - Informatics and Automation
PY  - 2024
SP  - 277
EP  - 296
VL  - 325
UR  - http://geodesic.mathdoc.fr/item/TRSPY_2024_325_a14/
LA  - ru
ID  - TRSPY_2024_325_a14
ER  - 
%0 Journal Article
%A A. S. Skripchenko
%T Interval Exchange Transformations with Vanishing Sah–Arnoux–Fathi Invariant
%J Informatics and Automation
%D 2024
%P 277-296
%V 325
%U http://geodesic.mathdoc.fr/item/TRSPY_2024_325_a14/
%G ru
%F TRSPY_2024_325_a14
A. S. Skripchenko. Interval Exchange Transformations with Vanishing Sah–Arnoux–Fathi Invariant. Informatics and Automation, Geometry, Topology, and Mathematical Physics, Tome 325 (2024), pp. 277-296. http://geodesic.mathdoc.fr/item/TRSPY_2024_325_a14/

[1] Arnoux P., “Échanges d'intervalles et flots sur les surfaces”, Théorie ergodique: Semin. Les Plans-sur-Bex, 1980, Monogr. enseign. math., 29, Univ. Genéve, Geneve, 1981, 5–38 | MR

[2] Arnoux P., Cassaigne J., Ferenczi S., Hubert P., “Arnoux–Rauzy interval exchanges”, Ann. Sc. Norm. Super. Pisa. Cl. Sci., 23:1 (2022), 233–264 | DOI | MR | Zbl

[3] Arnoux P., Furukado M., Ito S., “Substitutions from Rauzy induction on 4-interval exchange transformations and quasi-periodic tilings”, RIMS Kokyuroku, 1725 (2011), 152–174

[4] Arnoux P., Rauzy G., “Représentation géométrique de suites de complexité $2n+1$”, Bull. Soc. math. France, 119:2 (1991), 199–215 | DOI | MR | Zbl

[5] Arnoux P., Schmidt T., “Veech surfaces with nonperiodic directions in the trace field”, J. Mod. Dyn., 3:4 (2009), 611–629 | DOI | MR | Zbl

[6] Arnoux P., Yoccoz J.-C., “Construction de difféomorphismes pseudo-Anosov”, C. r. Acad. sci. Paris. Sér. I, 292:1 (1981), 75–78 | MR | Zbl

[7] Avila A., Forni G., “Weak mixing for interval exchange transformations and translation flows”, Ann. Math. Ser. 2, 165:2 (2007), 637–664 | DOI | MR | Zbl

[8] Avila A., Hubert P., Skripchenko A., “Diffusion for chaotic plane sections of 3-periodic surfaces”, Invent. math., 206:1 (2016), 109–146 | DOI | MR | Zbl

[9] Avila A., Viana M., “Dynamics in the moduli space of Abelian differentials”, Port. math., 62:4 (2005), 531–547 | MR | Zbl

[10] Berthé V., “On decision problems for substitutions in symbolic dynamics”, Reachability problems: Proc. 14th Int. Conf. RP 2020, Paris, 2020, Lect. Notes Comput. Sci., 12448, Springer, Cham, 2020, 3–19 | DOI | MR

[11] Berthé V., Steiner W., Thuswaldner J.M., “Geometry, dynamics, and arithmetic of $S$-adic shifts”, Ann. Inst. Fourier, 69:3 (2019), 1347–1409 | DOI | MR | Zbl

[12] Berthé V., Steiner W., Thuswaldner J.M., “Multidimensional continued fractions and symbolic codings of toral translations”, J. Eur. Math. Soc., 25:12 (2023), 4997–5057 | DOI | MR | Zbl

[13] Boshernitzan M., “Rank two interval exchange transformations”, Ergodic Theory Dyn. Syst., 8:3 (1988), 379–394 | DOI | MR | Zbl

[14] Boshernitzan M., Kornfeld I., “Interval translation mappings”, Ergodic Theory Dyn. Syst., 15:5 (1995), 821–832 | DOI | MR | Zbl

[15] Damanik D., Lenz D., “Substitution dynamical systems: Characterization of linear repetitivity and applications”, J. Math. Anal. Appl., 321:2 (2006), 766–780 | DOI | MR | Zbl

[16] Delecroix V., Rüth J., Minimality and unique ergodicity of interval exchange transformations, Talk at the Int. Conf. “Ergodic Theory and its Connections” in honor of the legacy of M. Boshernitzan, Rice Univ., Houston (2022) https://www.labri.fr/perso/vdelecro/2022-beamer-RICE.pdf

[17] Do H.T., Schmidt T.A., “New infinite families of pseudo-Anosov maps with vanishing Sah–Arnoux–Fathi invariant”, J. Mod. Dyn., 10 (2016), 541–561 | DOI | MR | Zbl

[18] Durand F., Petite S., “Conjugacy of unimodular Pisot substitution subshifts to domain exchanges”, Ann. Henri Lebesgue, 6 (2023), 1259–1289 | DOI | MR | Zbl

[19] Dynnikov I., Hubert P., Skripchenko A., “Dynamical systems around the Rauzy gasket and their ergodic properties”, Int. Math. Res. Not., 2023:8 (2023), 6461–6503 | DOI | Zbl

[20] Dynnikov I., Skripchenko A., “On typical leaves of a measured foliated 2-complex of thin type”, Topology, geometry, integrable systems and mathematical physics: Novikov's seminar 2012–2014, AMS Transl. Ser. 2, 234, Am. Math. Soc., Providence, RI, 2014, 173–199 | DOI | MR | Zbl

[21] Dynnikov I., Skripchenko A., “Minimality of interval exchange transformations with restrictions”, J. Mod. Dyn., 11 (2017), 219–248 | DOI | MR | Zbl

[22] Host B., “Valeurs propres des systèmes dynamiques définis par des substitutions de longueur variable”, Ergodic Theory Dyn. Syst., 6:4 (1986), 529–540 | DOI | MR | Zbl

[23] Hubert P., Lanneau E., Möller M., “Completely periodic directions and orbit closures of many pseudo-Anosov Teichmueller discs in $\mathcal Q(1,1,1,1)$”, Math. Ann., 353:1 (2012), 1–35 | DOI | MR | Zbl

[24] Katok A., “Interval exchange transformations and some special flows are not mixing”, Israel J. Math., 35:4 (1980), 301–310 | DOI | MR | Zbl

[25] Keane M., “Interval exchange transformations”, Math. Z., 141 (1975), 25–31 | DOI | MR | Zbl

[26] Kontsevich M., Zorich A., “Connected components of the moduli spaces of Abelian differentials with prescribed singularities”, Invent. math., 153:3 (2003), 631–678 | DOI | MR | Zbl

[27] Lagarias J.C., “The quality of the Diophantine approximations found by the Jacobi–Perron algorithm and related algorithms”, Monatsh. Math., 115:4 (1993), 299–328 | DOI | MR | Zbl

[28] Masur H., “Interval exchange transformations and measured foliations”, Ann. Math. Ser. 2, 115:1 (1982), 169–200 | DOI | MR | Zbl

[29] McMullen C.T., “Cascades in the dynamics of measured foliations”, Ann. sci. Éc. norm. supér. Sér. 4, 48:1 (2015), 1–39 | DOI | MR | Zbl

[30] Mercat P., “Geometrical representation of subshifts for primitive substitutions”, Ergodic Theory Dyn. Syst., 44:7 (2024), 1885–1912 ; arXiv: 2201.01268 [math.DS] | DOI | MR | DOI

[31] Mercat P., Coboundaries and eigenvalues of morphic subshifts, E-print, 2024, arXiv: 2404.13656 [math.DS] | DOI

[32] Mercat P., Eigenvalues of subshifts, 2024 http://www.i2m.univ-amu.fr/perso/paul.mercat/Eigenvalues.html

[33] Minsky Y., Weiss B., “Cohomology classes represented by measured foliations, and Mahler's question for interval exchanges”, Ann. sci. Éc. norm. supér. Sér. 4, 47:2 (2014), 245–284 | DOI | MR | Zbl

[34] S. P. Novikov, “The Hamiltonian formalism and a many-valued analogue of Morse theory”, Russ. Math. Surv., 37:5 (1982), 1–56 | DOI | DOI | MR | Zbl

[35] V. I. Oseledec, “A multiplicative ergodic theorem. Lyapunov characteristic numbers for dynamical systems”, Trans. Moscow Math. Soc., 19 (1968), 197–231 | MR | Zbl

[36] Rühr R., “A convexity criterion for unique ergodicity of interval exchange transformations”, Moscow J. Comb. Number Theory, 9:1 (2020), 51–54 | DOI | MR | Zbl

[37] Sinai Ya.G., Ulcigrai C., “Weak mixing in interval exchange transformations of periodic type”, Lett. Math. Phys., 74:2 (2005), 111–133 | DOI | MR | Zbl

[38] A. S. Skripchenko, “Renormalization in one-dimensional dynamics”, Russ. Math. Surv., 78:6 (2023), 983–1021 | DOI | DOI | MR | Zbl

[39] Strenner B., “Lifts of pseudo-Anosov homeomorphisms of nonorientable surfaces have vanishing SAF invariant”, Math. Res. Lett., 25:2 (2018), 677–685 | DOI | MR | Zbl

[40] Veech W.A., “Gauss measures for transformations on the space of interval exchange maps”, Ann. Math. Ser. 2, 115:2 (1982), 201–242 | DOI | MR | Zbl

[41] Veech W.A., “The metric theory of interval exchange transformations. I: Generic spectral properties”, Am. J. Math., 106:6 (1984), 1331–1359 | DOI | MR | Zbl

[42] Viana M., “Ergodic theory of interval exchange maps”, Rev. Mat. Complut., 19:1 (2006), 7–100 | DOI | MR | Zbl

[43] Wu Y., Applications of Rauzy induction on the generic ergodic theory of interval exchange transformations, PhD Thesis, Rice Univ., Houston, 2006 https://repository.rice.edu/server/api/core/bitstreams/10c898a2-f4e2-41b5-8725-7f75c873897c/content