Compatible Pairs of Dubrovin–Novikov Poisson Brackets and Lagrangian Representations of Integrable Hierarchies
Informatics and Automation, Geometry, Topology, and Mathematical Physics, Tome 325 (2024), pp. 238-243 Cet article a éte moissonné depuis la source Math-Net.Ru

Voir la notice de l'article

We consider compatible pairs of local Hamiltonian structures of Dubrovin–Novikov type and the construction of nonlocal Hamiltonian structures of Ferapontov type. We prove that the third and fourth Hamiltonian structures of Ferapontov type cannot contain more terms in the nonlocal part than the number of field variables. We also give local Lagrangian representations for both these nonlocal Hamiltonian structures. Thus, we demonstrate that any hydrodynamic-type system equipped with a compatible pair of local Hamiltonian structures of Dubrovin–Novikov type simultaneously possesses four local Lagrangian representations.
Keywords: commuting flow, conservation law, integrable system, Hamiltonian structure, local Lagrangian.
@article{TRSPY_2024_325_a12,
     author = {M. V. Pavlov},
     title = {Compatible {Pairs} of {Dubrovin{\textendash}Novikov} {Poisson} {Brackets} and {Lagrangian} {Representations} of {Integrable} {Hierarchies}},
     journal = {Informatics and Automation},
     pages = {238--243},
     year = {2024},
     volume = {325},
     language = {ru},
     url = {http://geodesic.mathdoc.fr/item/TRSPY_2024_325_a12/}
}
TY  - JOUR
AU  - M. V. Pavlov
TI  - Compatible Pairs of Dubrovin–Novikov Poisson Brackets and Lagrangian Representations of Integrable Hierarchies
JO  - Informatics and Automation
PY  - 2024
SP  - 238
EP  - 243
VL  - 325
UR  - http://geodesic.mathdoc.fr/item/TRSPY_2024_325_a12/
LA  - ru
ID  - TRSPY_2024_325_a12
ER  - 
%0 Journal Article
%A M. V. Pavlov
%T Compatible Pairs of Dubrovin–Novikov Poisson Brackets and Lagrangian Representations of Integrable Hierarchies
%J Informatics and Automation
%D 2024
%P 238-243
%V 325
%U http://geodesic.mathdoc.fr/item/TRSPY_2024_325_a12/
%G ru
%F TRSPY_2024_325_a12
M. V. Pavlov. Compatible Pairs of Dubrovin–Novikov Poisson Brackets and Lagrangian Representations of Integrable Hierarchies. Informatics and Automation, Geometry, Topology, and Mathematical Physics, Tome 325 (2024), pp. 238-243. http://geodesic.mathdoc.fr/item/TRSPY_2024_325_a12/

[1] B. A. Dubrovin, “Differential geometry of strongly integrable systems of hydrodynamic type”, Funct. Anal. Appl., 24:4 (1990), 280–285 | DOI | MR | Zbl

[2] Dubrovin B., “Geometry of 2D topological field theories”, Integrable systems and quantum groups: Lect. Montecatini Terme, Italy, 1993, Lect. Notes Math., 1620, Springer, Berlin, 1996, 120–348 | DOI | MR | Zbl

[3] B. A. Dubrovin, “Hamiltonian PDEs and Frobenius manifolds”, Russ. Math. Surv., 63:6 (2008), 999–1010 | DOI | DOI | MR | MR | Zbl

[4] B. A. Dubrovin and S. P. Novikov, “Hamiltonian formalism of one-dimensional systems of hydrodynamic type, and the Bogolyubov–Whitham averaging method”, Sov. Math., Dokl., 27 (1983), 665–669 | MR | Zbl

[5] B. A. Dubrovin and S. P. Novikov, “Hydrodynamics of weakly deformed soliton lattices. Differential geometry and Hamiltonian theory”, Russ. Math. Surv., 44:6 (1989), 35–124 | DOI | MR | Zbl

[6] Ferapontov E.V., “Nonlocal Hamiltonian operators of hydrodynamic type: Differential geometry and applications”, Topics in topology and mathematical physics, AMS Transl. Ser. 2, 170, Am. Math. Soc., Providence, RI, 1995, 33–58 | MR | Zbl

[7] Ferapontov E.V., “Compatible Poisson brackets of hydrodynamic type”, J. Phys. A: Math. Gen., 34:11 (2001), 2377–2388 | DOI | MR | Zbl

[8] Maltsev A.Ya., Novikov S.P., “On the local systems Hamiltonian in the weakly non-local Poisson brackets”, Physica D, 156:1–2 (2001), 53–80 | DOI | MR | Zbl

[9] O. I. Mokhov, “On compatible Poisson structures of hydrodynamic type”, Russ. Math. Surv., 52:6 (1997), 1310–1311 | DOI | DOI | MR

[10] O. I. Mokhov, “Integrable bi-Hamiltonian systems of hydrodynamic type”, Russ. Math. Surv., 57:1 (2002), 153–154 | DOI | DOI | MR | MR | Zbl

[11] Nutku Y., Pavlov M.V., “Multi-Lagrangians for integrable systems”, J. Math. Phys., 43:3 (2002), 1441–1459 | DOI | MR | Zbl

[12] M. V. Pavlov, “Elliptic coordinates and multi-Hamiltonian structures of hydrodynamic type systems”, Dokl. Math., 50:3 (1995), 374–377 | MR | Zbl

[13] M. V. Pavlov, “The description of pairs of compatible first-order differential geometric Poisson brackets”, Theor. Math. Phys., 142:2 (2005), 244–258 | DOI | DOI | MR | Zbl

[14] M. V. Pavlov and S. P. Tsarev, “Tri-Hamiltonian structures of Egorov systems of hydrodynamic type”, Funct. Anal. Appl., 37:1 (2003), 32–45 | DOI | DOI | MR | Zbl

[15] S. P. Tsarev, “On Poisson brackets and one-dimensional Hamiltonian systems of hydrodynamic type”, Sov. Math., Dokl., 31 (1985), 488–491 | MR | Zbl

[16] S. P. Tsarev, “The geometry of Hamiltonian systems of hydrodynamic type. The generalized hodograph method”, Math. USSR, Izv., 37:2 (1991), 397–419 | DOI | MR | Zbl