@article{TRSPY_2024_325_a12,
author = {M. V. Pavlov},
title = {Compatible {Pairs} of {Dubrovin{\textendash}Novikov} {Poisson} {Brackets} and {Lagrangian} {Representations} of {Integrable} {Hierarchies}},
journal = {Informatics and Automation},
pages = {238--243},
year = {2024},
volume = {325},
language = {ru},
url = {http://geodesic.mathdoc.fr/item/TRSPY_2024_325_a12/}
}
TY - JOUR AU - M. V. Pavlov TI - Compatible Pairs of Dubrovin–Novikov Poisson Brackets and Lagrangian Representations of Integrable Hierarchies JO - Informatics and Automation PY - 2024 SP - 238 EP - 243 VL - 325 UR - http://geodesic.mathdoc.fr/item/TRSPY_2024_325_a12/ LA - ru ID - TRSPY_2024_325_a12 ER -
M. V. Pavlov. Compatible Pairs of Dubrovin–Novikov Poisson Brackets and Lagrangian Representations of Integrable Hierarchies. Informatics and Automation, Geometry, Topology, and Mathematical Physics, Tome 325 (2024), pp. 238-243. http://geodesic.mathdoc.fr/item/TRSPY_2024_325_a12/
[1] B. A. Dubrovin, “Differential geometry of strongly integrable systems of hydrodynamic type”, Funct. Anal. Appl., 24:4 (1990), 280–285 | DOI | MR | Zbl
[2] Dubrovin B., “Geometry of 2D topological field theories”, Integrable systems and quantum groups: Lect. Montecatini Terme, Italy, 1993, Lect. Notes Math., 1620, Springer, Berlin, 1996, 120–348 | DOI | MR | Zbl
[3] B. A. Dubrovin, “Hamiltonian PDEs and Frobenius manifolds”, Russ. Math. Surv., 63:6 (2008), 999–1010 | DOI | DOI | MR | MR | Zbl
[4] B. A. Dubrovin and S. P. Novikov, “Hamiltonian formalism of one-dimensional systems of hydrodynamic type, and the Bogolyubov–Whitham averaging method”, Sov. Math., Dokl., 27 (1983), 665–669 | MR | Zbl
[5] B. A. Dubrovin and S. P. Novikov, “Hydrodynamics of weakly deformed soliton lattices. Differential geometry and Hamiltonian theory”, Russ. Math. Surv., 44:6 (1989), 35–124 | DOI | MR | Zbl
[6] Ferapontov E.V., “Nonlocal Hamiltonian operators of hydrodynamic type: Differential geometry and applications”, Topics in topology and mathematical physics, AMS Transl. Ser. 2, 170, Am. Math. Soc., Providence, RI, 1995, 33–58 | MR | Zbl
[7] Ferapontov E.V., “Compatible Poisson brackets of hydrodynamic type”, J. Phys. A: Math. Gen., 34:11 (2001), 2377–2388 | DOI | MR | Zbl
[8] Maltsev A.Ya., Novikov S.P., “On the local systems Hamiltonian in the weakly non-local Poisson brackets”, Physica D, 156:1–2 (2001), 53–80 | DOI | MR | Zbl
[9] O. I. Mokhov, “On compatible Poisson structures of hydrodynamic type”, Russ. Math. Surv., 52:6 (1997), 1310–1311 | DOI | DOI | MR
[10] O. I. Mokhov, “Integrable bi-Hamiltonian systems of hydrodynamic type”, Russ. Math. Surv., 57:1 (2002), 153–154 | DOI | DOI | MR | MR | Zbl
[11] Nutku Y., Pavlov M.V., “Multi-Lagrangians for integrable systems”, J. Math. Phys., 43:3 (2002), 1441–1459 | DOI | MR | Zbl
[12] M. V. Pavlov, “Elliptic coordinates and multi-Hamiltonian structures of hydrodynamic type systems”, Dokl. Math., 50:3 (1995), 374–377 | MR | Zbl
[13] M. V. Pavlov, “The description of pairs of compatible first-order differential geometric Poisson brackets”, Theor. Math. Phys., 142:2 (2005), 244–258 | DOI | DOI | MR | Zbl
[14] M. V. Pavlov and S. P. Tsarev, “Tri-Hamiltonian structures of Egorov systems of hydrodynamic type”, Funct. Anal. Appl., 37:1 (2003), 32–45 | DOI | DOI | MR | Zbl
[15] S. P. Tsarev, “On Poisson brackets and one-dimensional Hamiltonian systems of hydrodynamic type”, Sov. Math., Dokl., 31 (1985), 488–491 | MR | Zbl
[16] S. P. Tsarev, “The geometry of Hamiltonian systems of hydrodynamic type. The generalized hodograph method”, Math. USSR, Izv., 37:2 (1991), 397–419 | DOI | MR | Zbl