@article{TRSPY_2024_325_a11,
author = {R. G. Novikov},
title = {A {Holographic} {Uniqueness} {Theorem}},
journal = {Informatics and Automation},
pages = {232--237},
year = {2024},
volume = {325},
language = {ru},
url = {http://geodesic.mathdoc.fr/item/TRSPY_2024_325_a11/}
}
R. G. Novikov. A Holographic Uniqueness Theorem. Informatics and Automation, Geometry, Topology, and Mathematical Physics, Tome 325 (2024), pp. 232-237. http://geodesic.mathdoc.fr/item/TRSPY_2024_325_a11/
[1] Atkinson F.V., “On Sommerfeld's “radiation condition””, Philos. Mag. Ser. 7, 40 (1949), 645–651 | DOI | MR | Zbl
[2] Burov V.A., Rumyantseva O.D., Obratnye volnovye zadachi akusticheskoi tomografii, Ch. 2: Obratnye zadachi akusticheskogo rasseyaniya, LENAND, M., 2019
[3] Gabor D., “A new microscopic principle”, Nature, 161:4098 (1948), 777–778 | DOI
[4] Jonas P., Louis A.K., “Phase contrast tomography using holographic measurements”, Inverse Probl., 20:1 (2004), 75–102 | DOI | MR | Zbl
[5] Hohage T., Novikov R.G., “Inverse wave propagation problems without phase information”, Inverse Probl., 35:7 (2019), 070301 | DOI | MR | Zbl
[6] Karp S.N., “A convergent ‘farfield’ expansion for two-dimensional radiation functions”, Commun. Pure Appl. Math., 14:3 (1961), 427–434 | DOI | MR | Zbl
[7] Klibanov M.V., “Phaseless inverse scattering problems in three dimensions”, SIAM J. Appl. Math., 74:2 (2014), 392–410 | DOI | MR | Zbl
[8] Klibanov M.V., Koshev N.A., Nguyen D.-L., Nguyen L.H., Brettin A., Astratov V.N., “A numerical method to solve a phaseless coefficient inverse problem from a single measurement of experimental data”, SIAM J. Imaging Sci., 11:4 (2018), 2339–2367 | DOI | MR | Zbl
[9] Klibanov M.V., Romanov V.G., “Reconstruction procedures for two inverse scattering problems without the phase information”, SIAM J. Appl. Math., 76:1 (2016), 178–196 | DOI | MR | Zbl
[10] Maretzke S., “A uniqueness result for propagation-based phase contrast imaging from a single measurement”, Inverse Probl., 31:6 (2015), 065003 | DOI | MR | Zbl
[11] Maretzke S., Hohage T., “Stability estimates for linearized near-field phase retrieval in X-ray phase contrast imaging”, SIAM J. Appl. Math., 77:2 (2017), 384–408 | DOI | MR | Zbl
[12] Novikov R.G., “Inverse scattering without phase information”, Sémin. Laurent Schwartz. EDP appl., 2014–2015, no. 16 | DOI | MR
[13] Novikov R.G., “Formulas for phase recovering from phaseless scattering data at fixed frequency”, Bull. sci. math., 139:8 (2015), 923–936 | DOI | MR | Zbl
[14] Novikov R.G., “Phaseless inverse scattering in the one-dimensional case”, Eurasian J. Math. Comput. Appl., 3:1 (2015), 63–69 | MR
[15] Novikov R.G., “Multipoint formulas for phase recovering from phaseless scattering data”, J. Geom. Anal., 31:2 (2021), 1965–1991 | DOI | MR | Zbl
[16] Novikov R., Sharma B.L., “Phase recovery from phaseless scattering data for discrete Schrödinger operators”, Inverse Probl., 39:12 (2023), 125006 | DOI | MR
[17] Novikov R.G., Sivkin V.N., “Error estimates for phase recovering from phaseless scattering data”, Eurasian J. Math. Comput. Appl., 8:1 (2020), 44–61 | MR
[18] Novikov R.G., Sivkin V.N., “Fixed-distance multipoint formulas for the scattering amplitude from phaseless measurements”, Inverse Probl., 38:2 (2022), 025012 | DOI | MR | Zbl
[19] Nugent K.A., “X-ray noninterferometric phase imaging: A unified picture”, J. Opt. Soc. Am. A, 24:2 (2007), 536–547 | DOI
[20] V. G. Romanov, “Phaseless inverse problems that use wave interference”, Sib. Math. J., 59:3 (2018), 494–504 | DOI | DOI | MR | Zbl
[21] Wilcox C.H., “A generalization of theorems of Rellich and Atkinson”, Proc. Am. Math. Soc., 7:2 (1956), 271–276 | DOI | MR | Zbl
[22] Wolf E., “Three-dimensional structure determination of semi-transparent objects from holographic data”, Opt. Commun., 1:4 (1969), 153–156 | DOI
[23] Wolf E., “Determination of the amplitude and the phase of scattered fields by holography”, J. Opt. Soc. Am., 60:1 (1970), 18–20 | DOI