A Holographic Uniqueness Theorem
Informatics and Automation, Geometry, Topology, and Mathematical Physics, Tome 325 (2024), pp. 232-237 Cet article a éte moissonné depuis la source Math-Net.Ru

Voir la notice de l'article

We consider a plane wave, a radiation solution, and the sum of these solutions (total solution) for the Helmholtz equation in an exterior region in $\mathbb R^3$. For a ray in this region whose direction is different from the propagation direction of the plane wave, we show that the restriction of the radiation solution to this ray is uniquely determined by the intensity of the total solution on an interval of this ray. As a corollary, we also prove that the restriction of the radiation solution to any plane in the exterior region is uniquely determined by the intensity of the total solution on an open domain in this plane. In particular, these results solve one of the old mathematical questions in holography.
Keywords: Helmholtz equation, phase recovering, holography.
@article{TRSPY_2024_325_a11,
     author = {R. G. Novikov},
     title = {A {Holographic} {Uniqueness} {Theorem}},
     journal = {Informatics and Automation},
     pages = {232--237},
     year = {2024},
     volume = {325},
     language = {ru},
     url = {http://geodesic.mathdoc.fr/item/TRSPY_2024_325_a11/}
}
TY  - JOUR
AU  - R. G. Novikov
TI  - A Holographic Uniqueness Theorem
JO  - Informatics and Automation
PY  - 2024
SP  - 232
EP  - 237
VL  - 325
UR  - http://geodesic.mathdoc.fr/item/TRSPY_2024_325_a11/
LA  - ru
ID  - TRSPY_2024_325_a11
ER  - 
%0 Journal Article
%A R. G. Novikov
%T A Holographic Uniqueness Theorem
%J Informatics and Automation
%D 2024
%P 232-237
%V 325
%U http://geodesic.mathdoc.fr/item/TRSPY_2024_325_a11/
%G ru
%F TRSPY_2024_325_a11
R. G. Novikov. A Holographic Uniqueness Theorem. Informatics and Automation, Geometry, Topology, and Mathematical Physics, Tome 325 (2024), pp. 232-237. http://geodesic.mathdoc.fr/item/TRSPY_2024_325_a11/

[1] Atkinson F.V., “On Sommerfeld's “radiation condition””, Philos. Mag. Ser. 7, 40 (1949), 645–651 | DOI | MR | Zbl

[2] Burov V.A., Rumyantseva O.D., Obratnye volnovye zadachi akusticheskoi tomografii, Ch. 2: Obratnye zadachi akusticheskogo rasseyaniya, LENAND, M., 2019

[3] Gabor D., “A new microscopic principle”, Nature, 161:4098 (1948), 777–778 | DOI

[4] Jonas P., Louis A.K., “Phase contrast tomography using holographic measurements”, Inverse Probl., 20:1 (2004), 75–102 | DOI | MR | Zbl

[5] Hohage T., Novikov R.G., “Inverse wave propagation problems without phase information”, Inverse Probl., 35:7 (2019), 070301 | DOI | MR | Zbl

[6] Karp S.N., “A convergent ‘farfield’ expansion for two-dimensional radiation functions”, Commun. Pure Appl. Math., 14:3 (1961), 427–434 | DOI | MR | Zbl

[7] Klibanov M.V., “Phaseless inverse scattering problems in three dimensions”, SIAM J. Appl. Math., 74:2 (2014), 392–410 | DOI | MR | Zbl

[8] Klibanov M.V., Koshev N.A., Nguyen D.-L., Nguyen L.H., Brettin A., Astratov V.N., “A numerical method to solve a phaseless coefficient inverse problem from a single measurement of experimental data”, SIAM J. Imaging Sci., 11:4 (2018), 2339–2367 | DOI | MR | Zbl

[9] Klibanov M.V., Romanov V.G., “Reconstruction procedures for two inverse scattering problems without the phase information”, SIAM J. Appl. Math., 76:1 (2016), 178–196 | DOI | MR | Zbl

[10] Maretzke S., “A uniqueness result for propagation-based phase contrast imaging from a single measurement”, Inverse Probl., 31:6 (2015), 065003 | DOI | MR | Zbl

[11] Maretzke S., Hohage T., “Stability estimates for linearized near-field phase retrieval in X-ray phase contrast imaging”, SIAM J. Appl. Math., 77:2 (2017), 384–408 | DOI | MR | Zbl

[12] Novikov R.G., “Inverse scattering without phase information”, Sémin. Laurent Schwartz. EDP appl., 2014–2015, no. 16 | DOI | MR

[13] Novikov R.G., “Formulas for phase recovering from phaseless scattering data at fixed frequency”, Bull. sci. math., 139:8 (2015), 923–936 | DOI | MR | Zbl

[14] Novikov R.G., “Phaseless inverse scattering in the one-dimensional case”, Eurasian J. Math. Comput. Appl., 3:1 (2015), 63–69 | MR

[15] Novikov R.G., “Multipoint formulas for phase recovering from phaseless scattering data”, J. Geom. Anal., 31:2 (2021), 1965–1991 | DOI | MR | Zbl

[16] Novikov R., Sharma B.L., “Phase recovery from phaseless scattering data for discrete Schrödinger operators”, Inverse Probl., 39:12 (2023), 125006 | DOI | MR

[17] Novikov R.G., Sivkin V.N., “Error estimates for phase recovering from phaseless scattering data”, Eurasian J. Math. Comput. Appl., 8:1 (2020), 44–61 | MR

[18] Novikov R.G., Sivkin V.N., “Fixed-distance multipoint formulas for the scattering amplitude from phaseless measurements”, Inverse Probl., 38:2 (2022), 025012 | DOI | MR | Zbl

[19] Nugent K.A., “X-ray noninterferometric phase imaging: A unified picture”, J. Opt. Soc. Am. A, 24:2 (2007), 536–547 | DOI

[20] V. G. Romanov, “Phaseless inverse problems that use wave interference”, Sib. Math. J., 59:3 (2018), 494–504 | DOI | DOI | MR | Zbl

[21] Wilcox C.H., “A generalization of theorems of Rellich and Atkinson”, Proc. Am. Math. Soc., 7:2 (1956), 271–276 | DOI | MR | Zbl

[22] Wolf E., “Three-dimensional structure determination of semi-transparent objects from holographic data”, Opt. Commun., 1:4 (1969), 153–156 | DOI

[23] Wolf E., “Determination of the amplitude and the phase of scattered fields by holography”, J. Opt. Soc. Am., 60:1 (1970), 18–20 | DOI