Minimal Model of a Nilmanifold and Moduli Space of Complex Structures
Informatics and Automation, Geometry, Topology, and Mathematical Physics, Tome 325 (2024), pp. 201-231 Cet article a éte moissonné depuis la source Math-Net.Ru

Voir la notice de l'article

For an arbitrary real nilpotent Lie algebra (nilmanifold) with an integrable complex structure, we propose an algorithm for constructing a special model of this nilmanifold that includes information on the complex structure. As a main application, we obtain a classification of eight-dimensional $2$-generated nilpotent Lie algebras that admit an integrable complex structure. We also describe the moduli spaces of complex structures for each Lie algebra from the resulting classification list.
Keywords: nilmanifold, nilpotent Lie algebra, complex structure, lower central series, minimal model, Dolbeault cohomology.
@article{TRSPY_2024_325_a10,
     author = {D. V. Millionshchikov},
     title = {Minimal {Model} of a {Nilmanifold} and {Moduli} {Space} of {Complex} {Structures}},
     journal = {Informatics and Automation},
     pages = {201--231},
     year = {2024},
     volume = {325},
     language = {ru},
     url = {http://geodesic.mathdoc.fr/item/TRSPY_2024_325_a10/}
}
TY  - JOUR
AU  - D. V. Millionshchikov
TI  - Minimal Model of a Nilmanifold and Moduli Space of Complex Structures
JO  - Informatics and Automation
PY  - 2024
SP  - 201
EP  - 231
VL  - 325
UR  - http://geodesic.mathdoc.fr/item/TRSPY_2024_325_a10/
LA  - ru
ID  - TRSPY_2024_325_a10
ER  - 
%0 Journal Article
%A D. V. Millionshchikov
%T Minimal Model of a Nilmanifold and Moduli Space of Complex Structures
%J Informatics and Automation
%D 2024
%P 201-231
%V 325
%U http://geodesic.mathdoc.fr/item/TRSPY_2024_325_a10/
%G ru
%F TRSPY_2024_325_a10
D. V. Millionshchikov. Minimal Model of a Nilmanifold and Moduli Space of Complex Structures. Informatics and Automation, Geometry, Topology, and Mathematical Physics, Tome 325 (2024), pp. 201-231. http://geodesic.mathdoc.fr/item/TRSPY_2024_325_a10/

[1] Chevalley C., Eilenberg S., “Cohomology theory of Lie groups and Lie algebras”, Trans. Am. Math. Soc., 63 (1948), 85–124 | DOI | MR | Zbl

[2] Console S., Fino A., “Dolbeault cohomology of compact nilmanifolds”, Transform. Groups, 6:2 (2001), 111–124 | DOI | MR | Zbl

[3] Cordero L.A., Fernández M., Gray A., Ugarte L., “Nilpotent complex structures on compact nilmanifolds”, Differential geometry and topology: Proc. Workshop, Palermo, 1996, Suppl. Rend. Circ. Mat. Palermo. Ser. 2, 49, Circ. Mat. Palermo, Palermo, 1997, 83–100 | MR | Zbl

[4] Cordero L.A., Fernández M., Gray A., Ugarte L., “Compact nilmanifolds with nilpotent complex structures: Dolbeault cohomology”, Trans. Am. Math. Soc., 352:2 (2000), 5405–5433 | DOI | MR | Zbl

[5] Cordero L.A., Fernández M., Gray A., Ugarte L., “Nilpotent complex structures”, Rev. R. Acad. Cienc. Exactas Fís. Nat. Ser. A: Mat., 95:1 (2001), 45–55 | MR | Zbl

[6] Dotti I.G., Fino A., “Hypercomplex eight-dimensional nilpotent Lie groups”, J. Pure Appl. Algebra, 184:1 (2003), 47–57 | DOI | MR

[7] Fino A., Rollenske S., Ruppenthal J., “Dolbeault cohomology of complex nilmanifolds foliated in toroidal groups”, Q. J. Math., 70:4 (2019), 1265–1279 | DOI | MR | Zbl

[8] Gao Q., Zhao Q., Zheng F., “Maximal nilpotent complex structures”, Transform. Groups, 28:1 (2023), 241–284 | DOI | MR | Zbl

[9] Goze M., Remm E., “Non existence of complex structures on filiform Lie algebras”, Commun. Algebra, 30:8 (2002), 3777–3788 | DOI | MR | Zbl

[10] Hasegawa K., “Minimal models of nilmanifolds”, Proc. Am. Math. Soc., 106:1 (1989), 65–71 | DOI | MR | Zbl

[11] Latorre A., Ugarte L., Villacampa R., “The ascending central series of nilpotent Lie algebras with complex structure”, Trans. Am. Math. Soc., 372:6 (2019), 3867–3903 | DOI | MR | Zbl

[12] Latorre A., Ugarte L., Villacampa R., “Complex structures on nilpotent Lie algebras with one-dimensional center”, J. Algebra, 614 (2023), 271–306 | DOI | MR | Zbl

[13] A. I. Mal'tsev, “On a class of homogeneous spaces”, Am. Math. Soc. Transl., 39 (1951), 1–33 | Zbl

[14] Millionshchikov D.V., “Complex structures on nilpotent Lie algebras and descending central series”, Rend. Semin. Mat. Univ. Politec. Torino, 74:1 (2016), 163–182 | MR | Zbl

[15] D. V. Millionshchikov and R. Jimenez, “Geometry of central extensions of nilpotent Lie algebras”, Proc. Steklov Inst. Math., 305 (2019), 209–231 | DOI | DOI | MR | Zbl

[16] V. V. Morozov, “Classification of nilpotent Lie algebras of dimension six”, Izv. Vyssh. Uchebn. Zaved., Mat., 1958, no. 4, 161–171 | MR | Zbl

[17] Newlander A., Nirenberg L., “Complex analytic coordinates in almost complex manifolds”, Ann. Math. Ser. 2, 65 (1957), 391–404 | DOI | MR | Zbl

[18] Nomizu K., “On the cohomology of compact homogeneous spaces of nilpotent Lie groups”, Ann. Math. Ser. 2, 59 (1954), 531–538 | DOI | MR | Zbl

[19] Rollenske S., “Dolbeault cohomology of nilmanifolds with left-invariant complex structure”, Complex and differential geometry: Proc. Conf., Hanover, 2009, Springer Proc. Math., 8, Springer, Berlin, 2011, 369–392 | DOI | MR | Zbl

[20] Salamon S.M., “Complex structures on nilpotent Lie algebras”, J. Pure Appl. Algebra, 157:2–3 (2001), 311–333 | DOI | MR | Zbl