DR Hierarchies: From the Moduli Spaces of Curves to Integrable Systems
Informatics and Automation, Geometry, Topology, and Mathematical Physics, Tome 325 (2024), pp. 26-66 Cet article a éte moissonné depuis la source Math-Net.Ru

Voir la notice de l'article

The main goal of the paper is to show that the DR hierarchies, introduced by the author in an earlier paper, allow one to establish, in the most clear way, a relation between the topology of the Deligne–Mumford compactification $\overline {\mathcal M}_{g,n}$ of the moduli space $\mathcal M_{g,n}$ of smooth algebraic curves of genus $g$ with $n$ marked points and integrable systems of mathematical physics. We will also discuss a promising approach given by the theory of DR hierarchies to the solution of a general problem in the area of Witten-type conjectures, namely, to the proof of the existence of a Dubrovin–Zhang hierarchy for an arbitrary cohomological field theory.
Keywords: Riemann surface, integrable system.
Mots-clés : moduli space
@article{TRSPY_2024_325_a1,
     author = {A. Yu. Buryak},
     title = {DR {Hierarchies:} {From} the {Moduli} {Spaces} of {Curves} to {Integrable} {Systems}},
     journal = {Informatics and Automation},
     pages = {26--66},
     year = {2024},
     volume = {325},
     language = {ru},
     url = {http://geodesic.mathdoc.fr/item/TRSPY_2024_325_a1/}
}
TY  - JOUR
AU  - A. Yu. Buryak
TI  - DR Hierarchies: From the Moduli Spaces of Curves to Integrable Systems
JO  - Informatics and Automation
PY  - 2024
SP  - 26
EP  - 66
VL  - 325
UR  - http://geodesic.mathdoc.fr/item/TRSPY_2024_325_a1/
LA  - ru
ID  - TRSPY_2024_325_a1
ER  - 
%0 Journal Article
%A A. Yu. Buryak
%T DR Hierarchies: From the Moduli Spaces of Curves to Integrable Systems
%J Informatics and Automation
%D 2024
%P 26-66
%V 325
%U http://geodesic.mathdoc.fr/item/TRSPY_2024_325_a1/
%G ru
%F TRSPY_2024_325_a1
A. Yu. Buryak. DR Hierarchies: From the Moduli Spaces of Curves to Integrable Systems. Informatics and Automation, Geometry, Topology, and Mathematical Physics, Tome 325 (2024), pp. 26-66. http://geodesic.mathdoc.fr/item/TRSPY_2024_325_a1/

[1] Alexandrov A., Hernández Iglesias F., Shadrin S., “Buryak–Okounkov formula for the $n$-point function and a new proof of the Witten conjecture”, Int. Math. Res. Not., 2021:18 (2021), 14296–14315 | DOI | MR | Zbl

[2] Arsie A., Buryak A., Lorenzoni P., Rossi P., “Flat F-manifolds, F-CohFTs, and integrable hierarchies”, Commun. Math. Phys., 388:1 (2021), 291–328 | DOI | MR | Zbl

[3] Bazhanov V.V., Lukyanov S.L., Zamolodchikov A.B., “Integrable structure of conformal field theory, quantum KdV theory and thermodynamic Bethe ansatz”, Commun. Math. Phys., 177:2 (1996), 381–398 | DOI | MR | Zbl

[4] Bazhanov V.V., Lukyanov S.L., Zamolodchikov A.B., “Integrable structure of conformal field theory. II: $Q$-operator and DDV equation”, Commun. Math. Phys., 190:2 (1997), 247–278 | DOI | MR | Zbl

[5] Bazhanov V.V., Lukyanov S.L., Zamolodchikov A.B., “Integrable structure of conformal field theory. III: The Yang–Baxter relation”, Commun. Math. Phys., 200:2 (1999), 297–324 | DOI | MR | Zbl

[6] Behrend K., “Gromov–Witten invariants in algebraic geometry”, Invent. math., 127:3 (1997), 601–617 | DOI | MR | Zbl

[7] Behrend K., Manin Yu., “Stacks of stable maps and Gromov–Witten invariants”, Duke Math. J., 85:1 (1996), 1–60 | DOI | MR | Zbl

[8] O. Brauer and A. Yu. Buryak, “The bi-Hamiltonian structures of the DR and DZ hierarchies in the approximation up to genus one”, Funct. Anal. Appl., 55:4 (2021), 272–285 | DOI | DOI | MR | MR | Zbl

[9] Buryak A., “Dubrovin–Zhang hierarchy for the Hodge integrals”, Commun. Number Theory Phys., 9:2 (2015), 239–271 | DOI | MR | Zbl

[10] Buryak A., “Double ramification cycles and integrable hierarchies”, Commun. Math. Phys., 336:3 (2015), 1085–1107 | DOI | MR | Zbl

[11] Buryak A., Dubrovin B., Guéré J., Rossi P., “Tau-structure for the double ramification hierarchies”, Commun. Math. Phys., 363:1 (2018), 191–260 | DOI | MR | Zbl

[12] Buryak A., Guéré J., “Towards a description of the double ramification hierarchy for Witten's $r$-spin class”, J. math. pures appl., 106:5 (2016), 837–865 | DOI | MR | Zbl

[13] Buryak A., Guéré J., Rossi P., “DR/DZ equivalence conjecture and tautological relations”, Geom. Topol., 23:7 (2019), 3537–3600 | DOI | MR | Zbl

[14] Buryak A., Posthuma H., Shadrin S., “A polynomial bracket for the Dubrovin–Zhang hierarchies”, J. Diff. Geom., 92:1 (2012), 153–185 | DOI | MR | Zbl

[15] Buryak A., Rossi P., “Recursion relations for double ramification hierarchies”, Commun. Math. Phys., 342:2 (2016), 533–568 | DOI | MR | Zbl

[16] Buryak A., Rossi P., “Double ramification cycles and quantum integrable systems”, Lett. Math. Phys., 106:3 (2016), 289–317 | DOI | MR | Zbl

[17] Buryak A., Rossi P., “A generalisation of Witten's conjecture for the Pixton class and the noncommutative KdV hierarchy”, J. Inst. Math. Jussieu, 22:6 (2023), 2987–3009 | DOI | MR | Zbl

[18] Buryak A., Rossi P., Shadrin S., “Towards a bihamiltonian structure for the double ramification hierarchy”, Lett. Math. Phys., 111:1 (2021), 13 | DOI | MR | Zbl

[19] Buryak A., Shadrin S., Tautological relations and integrable systems, E-print, 2022, arXiv: 2210.07552 [math.AG] | DOI

[20] Buryak A., Shadrin S., Spitz L., Zvonkine D., “Integrals of $\psi $-classes over double ramification cycles”, Am. J. Math., 137:3 (2015), 699–737 | DOI | MR | Zbl

[21] Carlet G., Dubrovin B., Zhang Y., “The extended Toda hierarchy”, Moscow Math. J., 4:2 (2004), 313–332 | DOI | MR | Zbl

[22] Chang H.-L., Li J., Li W.-P., “Witten's top Chern class via cosection localization”, Invent. math., 200:3 (2015), 1015–1063 | DOI | MR | Zbl

[23] Chiodo A., “The Witten top Chern class via K-theory”, J. Algebr. Geom., 15:4 (2006), 681–707 | DOI | MR | Zbl

[24] Deligne P., Mumford D., “The irreducibility of the space of curves of a given genus”, Publ. math. Inst. hautes étud. sci., 36 (1969), 75–109 | DOI | MR | Zbl

[25] Dubrovin B., “Geometry of 2D topological field theories”, Integrable systems and quantum groups: Lect. Montecatini Terme, Italy, 1993, Lect. Notes Math., 1620, Springer, Berlin, 1996, 120–348 | DOI | MR | Zbl

[26] B. A. Dubrovin and S. P. Novikov, “Hamiltonian formalism of one-dimensional systems of hydrodynamic type, and the Bogolyubov–Whitham averaging method”, Sov. Math., Dokl., 27 (1983), 665–669 | MR | Zbl

[27] Dubrovin B., Zhang Y., “Bihamiltonian hierarchies in 2D topological field theory at one-loop approximation”, Commun. Math. Phys., 198:2 (1998), 311–361 | DOI | MR | Zbl

[28] Dubrovin B., Zhang Y., Normal forms of hierarchies of integrable PDEs, Frobenius manifolds and Gromov–Witten invariants, E-print, 2001, arXiv: math/0108160 [math.DG] | DOI | Zbl

[29] Dubrovin B., Zhang Y., “Virasoro symmetries of the extended Toda hierarchy”, Commun. Math. Phys., 250:1 (2004), 161–193 | DOI | MR | Zbl

[30] Dymarsky A., Pavlenko K., Solovyev D., “Zero modes of local operators in 2d CFT on a cylinder”, J. High Energy Phys., 2020:7 (2020), 172 | DOI | MR | Zbl

[31] Faber C., Pandharipande R., “Hodge integrals and Gromov–Witten theory”, Invent. math., 139:1 (2000), 173–199 | DOI | MR | Zbl

[32] Faber C., Pandharipande R., “Relative maps and tautological classes”, J. Eur. Math. Soc., 7:1 (2005), 13–49 | DOI | MR | Zbl

[33] Faber C., Shadrin S., Zvonkine D., “Tautological relations and the $r$-spin Witten conjecture”, Ann. sci. Éc. norm. supér. Sér. 4, 43:4 (2010), 621–658 | DOI | MR | Zbl

[34] Fan H., Jarvis T., Ruan Y., “The Witten equation, mirror symmetry, and quantum singularity theory”, Ann. Math. Ser. 2, 178:1 (2013), 1–106 | DOI | MR | Zbl

[35] Graber T., Vakil R., “Relative virtual localization and vanishing of tautological classes on moduli spaces of curves”, Duke Math. J., 130:1 (2005), 1–37 | DOI | MR | Zbl

[36] Grushevsky S., Zakharov D., “The double ramification cycle and the theta divisor”, Proc. Am. Math. Soc., 142:12 (2014), 4053–4064 | DOI | MR | Zbl

[37] Hain R., “Normal functions and the geometry of moduli spaces of curves”, Handbook of moduli, v. 1, Adv. Lect. Math., 24, Int. Press, Somerville, MA, 2013, 527–578 | MR

[38] Janda F., Pandharipande R., Pixton A., Zvonkine D., “Double ramification cycles on the moduli spaces of curves”, Publ. math. Inst. hautes étud. sci., 125 (2017), 221–266 | DOI | MR | Zbl

[39] Kazarian M.E., Lando S.K., “An algebro-geometric proof of Witten's conjecture”, J. Am. Math. Soc., 20:4 (2007), 1079–1089 | DOI | MR | Zbl

[40] Kontsevich M., “Intersection theory on the moduli space of curves and the matrix Airy function”, Commun. Math. Phys., 147:1 (1992), 1–23 | DOI | MR | Zbl

[41] Kontsevich M., Manin Yu., “Gromov–Witten classes, quantum cohomology, and enumerative geometry”, Commun. Math. Phys., 164:3 (1994), 525–562 | DOI | MR | Zbl

[42] Li J., Tian G., “Virtual moduli cycles and Gromov–Witten invariants of algebraic varieties”, J. Am. Math. Soc., 11:1 (1998), 119–174 | DOI | MR | Zbl

[43] Looijenga E., “Cellular decompositions of compactified moduli spaces of pointed curves”, The moduli space of curves: Proc. Conf. Texel Island, 1994, Prog. Math., 129, Birkhäuser, Boston, 1995, 369–400 | DOI | MR | Zbl

[44] Magri F., “A simple model of the integrable Hamiltonian equation”, J. Math. Phys., 19:5 (1978), 1156–1162 | DOI | MR | Zbl

[45] Yu. I. Manin, Frobenius Manifolds, Quantum Cohomology, and Moduli Spaces, AMS Colloq. Publ., 47, Am. Math. Soc., Providence, RI, 1999 | MR | Zbl

[46] Manin Yu.I., Zograf P., “Invertible cohomological field theories and Weil–Petersson volumes”, Ann. Inst. Fourier, 50:2 (2000), 519–535 | DOI | MR | Zbl

[47] Mirzakhani M., “Weil–Petersson volumes and intersection theory on the moduli space of curves”, J. Am. Math. Soc., 20:1 (2007), 1–23 | DOI | MR | Zbl

[48] Mochizuki T., “The virtual class of the moduli stack of stable $r$-spin curves”, Commun. Math. Phys., 264:1 (2006), 1–40 | DOI | MR | Zbl

[49] Okounkov A., Pandharipande R., “The equivariant Gromov–Witten theory of $\mathbb {P}^1$”, Ann. Math. Ser. 2, 163:2 (2006), 561–605 | DOI | MR | Zbl

[50] Okounkov A., Pandharipande R., “Gromov–Witten theory, Hurwitz numbers, and matrix models”, Algebraic geometry: Seattle, 2005, Pt. 1, Proc. Symp. Pure Math., 80, Pt. 1, Am. Math. Soc., Providence, RI, 2009, 325–414 | DOI | MR | Zbl

[51] Pandharipande R., “A calculus for the moduli space of curves”, Algebraic geometry: Salt Lake City 2015, Pt. 1, Proc. Symp. Pure Math., 97, Pt. 1, Am. Math. Soc., Providence, RI, 2018, 459–487 | DOI | MR | Zbl

[52] Pandharipande R., Pixton A., Zvonkine D., “Relations on $\overline {M}_{g,n}$ via $3$-spin structures”, J. Am. Math. Soc., 28:1 (2015), 279–309 | DOI | MR | Zbl

[53] Polishchuk A., Vaintrob A., “Algebraic construction of Witten's top Chern class”, Advances in algebraic geometry motivated by physics: Proc. AMS Spec. Sess., Lowell, MA, 2000, Contemp. Math., 276, Am. Math. Soc., Providence, RI, 2001, 229–249 | DOI | MR | Zbl

[54] Robbin J.W., Salamon D.A., “A construction of the Deligne–Mumford orbifold”, J. Eur. Math. Soc., 8:4 (2006), 611–699 | DOI | MR | Zbl

[55] Satsuma J., Ablowitz M.J., Kodama Y., “On an internal wave equation describing a stratified fluid with finite depth”, Phys. Lett. A, 73:4 (1979), 283–286 | DOI | MR

[56] Teleman C., “The structure of 2D semi-simple field theories”, Invent. math., 188:3 (2012), 525–588 | DOI | MR | Zbl

[57] Vistoli A., “Intersection theory on algebraic stacks and on their moduli spaces”, Invent. math., 97:3 (1989), 613–670 | DOI | MR | Zbl

[58] Witten E., “Two-dimensional gravity and intersection theory on moduli space”, Proc. conf. on geometry and topology, Cambridge, MA, 1990, Surv. Differ. Geom., 1, Am. Math. Soc., Providence, RI, 1991, 243–310 | DOI | MR

[59] Witten E., “Algebraic geometry associated with matrix models of two dimensional gravity”, Topological methods in modern mathematics: Proc. Symp. Stony Brook, NY, 1991, Publish or Perish, Houston, TX, 1993, 235–269 | MR | Zbl

[60] Zvonkine D., Strebel differentials on stable curves and Kontsevich's proof of Witten's conjecture, E-print, 2002, arXiv: math/0209071v2 [math.AG] | DOI | Zbl

[61] Zvonkine D., “An introduction to moduli spaces of curves and their intersection theory”, Handbook of Teichmüller theory, v. III, IRMA Lect. Math. Theor. Phys., 17, Eur. Math. Soc., Zürich, 2012, 667–716 | DOI | MR | Zbl