Topology of Misorientation Spaces
Informatics and Automation, Geometry, Topology, and Mathematical Physics, Tome 325 (2024), pp. 5-25 Cet article a éte moissonné depuis la source Math-Net.Ru

Voir la notice de l'article

Let $G_1$ and $G_2$ be finite subgroups of $\mathrm {SO}(3)$. The double quotients of the form $X(G_1,G_2)=G_1\backslash\mathrm{SO}(3)/G_2$ were introduced in materials science under the name misorientation spaces. In this paper we review several known results that allow one to study the topology of misorientation spaces. Neglecting the orbifold structure, one can say that all misorientation spaces are closed orientable topological $3$-manifolds with finite fundamental groups. In the case when $G_1$ and $G_2$ are crystallographic groups, we compute the fundamental groups $\pi _1(X(G_1,G_2))$ and apply the elliptization theorem to describe these spaces. Many misorientation spaces are homeomorphic to $S^3$ by Perelman's theorem. However, we explicitly describe the topological types of several misorientation spaces without appealing to Perelman's theorem. The classification of misorientation spaces yields new $n$-valued group structures on the manifolds $S^3$ and $\mathbb R\mathrm P^3$. Finally, we outline the connection of the particular misorientation space $X(D_2,D_2)$ with integrable dynamical systems and toric topology.
Keywords: misorientation space, mathematical crystallography, point crystallographic group, finite group action, elliptic manifold.
Mots-clés : orbit space
@article{TRSPY_2024_325_a0,
     author = {Anton A. Ayzenberg and Dmitry V. Gugnin},
     title = {Topology of {Misorientation} {Spaces}},
     journal = {Informatics and Automation},
     pages = {5--25},
     year = {2024},
     volume = {325},
     language = {ru},
     url = {http://geodesic.mathdoc.fr/item/TRSPY_2024_325_a0/}
}
TY  - JOUR
AU  - Anton A. Ayzenberg
AU  - Dmitry V. Gugnin
TI  - Topology of Misorientation Spaces
JO  - Informatics and Automation
PY  - 2024
SP  - 5
EP  - 25
VL  - 325
UR  - http://geodesic.mathdoc.fr/item/TRSPY_2024_325_a0/
LA  - ru
ID  - TRSPY_2024_325_a0
ER  - 
%0 Journal Article
%A Anton A. Ayzenberg
%A Dmitry V. Gugnin
%T Topology of Misorientation Spaces
%J Informatics and Automation
%D 2024
%P 5-25
%V 325
%U http://geodesic.mathdoc.fr/item/TRSPY_2024_325_a0/
%G ru
%F TRSPY_2024_325_a0
Anton A. Ayzenberg; Dmitry V. Gugnin. Topology of Misorientation Spaces. Informatics and Automation, Geometry, Topology, and Mathematical Physics, Tome 325 (2024), pp. 5-25. http://geodesic.mathdoc.fr/item/TRSPY_2024_325_a0/

[1] Armstrong M.A., “On the fundamental group of an orbit space”, Proc. Cambridge Philos. Soc., 61:3 (1965), 639–646 | DOI | MR | Zbl

[2] Ayzenberg A., “Space of isospectral periodic tridiagonal matrices”, Algebr. Geom. Topol., 20:6 (2020), 2957–2994 | DOI | MR | Zbl

[3] Boileau M., Leeb B., Porti J., “Geometrization of 3-dimensional orbifolds”, Ann. Math. Ser. 2, 162:1 (2005), 195–290 | DOI | MR | Zbl

[4] Buchstaber V.M., “$n$-Valued groups: Theory and applications”, Moscow Math. J., 6:1 (2006), 57–84 | DOI | MR | Zbl

[5] Buchstaber V.M., Rees E.G., “Multivalued groups, their representations and Hopf algebras”, Transform. Groups, 2:4 (1997), 325–349 | DOI | MR | Zbl

[6] V. M. Buchstaber and S. Terzić, “The foundations of $(2n,k)$-manifolds”, Sb. Math., 210:4 (2019), 508–549 | DOI | DOI | MR | Zbl

[7] Du Val P., Homographies, quaternions, and rotations, Clarendon Press, Oxford, 1964 | MR | Zbl

[8] Dunbar W.D., “Geometric orbifolds”, Rev. Mat. Univ. Complutense Madrid, 1:1–3 (1988), 67–99 | MR | Zbl

[9] D. V. Gugnin, “Branched coverings of manifolds and $nH$-spaces”, Funct. Anal. Appl., 53:2 (2019), 133–136 | DOI | DOI | MR | Zbl

[10] D. V. Gugnin, “On the structure of coset $n$-valued topological groups on $S^3$ and $\mathbb {R}P^3$”, Funct. Anal. Appl., 57:1 (2023), 71–73 | DOI | DOI | MR | Zbl

[11] Horn A., “Doubly stochastic matrices and the diagonal of a rotation matrix”, Am. J. Math., 76:3 (1954), 620–630 | DOI | MR | Zbl

[12] Illman S., “Smooth equivariant triangulations of $G$-manifolds for $G$ a finite group”, Math. Ann., 233:3 (1978), 199–220 | DOI | MR | Zbl

[13] Karshon Y., Tolman S., “Topology of complexity one quotients”, Pac. J. Math., 308:2 (2020), 333–346 | DOI | MR | Zbl

[14] Kirby R.C., Scharlemann M.G., “Eight faces of the Poincaré homology 3-sphere”, Geometric topology: Proc. Georgia Topol. Conf., Athens, 1977, Academic Press, New York, 1979, 113–146 | MR

[15] I. M. Krichever, “Nonlinear equations and elliptic curves”, J. Sov. Math., 28:1 (1985), 51–90 | DOI | MR

[16] Lott J., “The work of Grigory Perelman”, Proc. Int. Congr. Math., Madrid, 2006. V. I: Plenary lectures and ceremonies, Eur. Math. Soc., Zürich, 2007, 66–76 | DOI | MR | Zbl

[17] Van Moerbeke P., “The spectrum of Jacobi matrices”, Invent. math., 37:1 (1976), 45–81 | DOI | MR | Zbl

[18] Patala S., Schuh C.A., “The topology of homophase misorientation spaces”, Philos. Mag., 91:10 (2011), 1489–1508 | DOI

[19] A. M. Perelomov, Integrable Systems of Classical Mechanics and Lie Algebras, v. 1, Birkhäuser, Basel, 1990 | MR | Zbl

[20] Przytycki J.H., Yasukhara A., “Symmetry of links and classification of lens spaces”, Geom. dedicata, 98:1 (2003), 57–61 | DOI | MR | Zbl

[21] Thurston W.P., Three-dimensional geometry and topology, v. 1, Princeton Math. Ser., 35, Princeton Univ. Press, Princeton, NJ, 1997 | MR | Zbl

[22] Tomei C., “The topology of isospectral manifolds of tridiagonal matrices”, Duke Math. J., 51:4 (1984), 981–996 | DOI | MR | Zbl