Metric on the Space of Quantum Processes
Informatics and Automation, Noncommutative Analysis and Quantum Information Theory, Tome 324 (2024), pp. 179-187
Voir la notice de l'article provenant de la source Math-Net.Ru
We consider a metric $D$ describing the difference between real (noisy) and ideal processes that is based on the operator norm of the maximum deviation between the final real and ideal states of a quantum system. We discuss the properties as well as geometric and experimental interpretations of the metric.
Keywords:
decoherence, quantum channels, decoherence metric, operator norm, noise level estimation.
@article{TRSPY_2024_324_a15,
author = {E. A. Pankovets and L. E. Fedichkin},
title = {Metric on the {Space} of {Quantum} {Processes}},
journal = {Informatics and Automation},
pages = {179--187},
publisher = {mathdoc},
volume = {324},
year = {2024},
language = {ru},
url = {http://geodesic.mathdoc.fr/item/TRSPY_2024_324_a15/}
}
E. A. Pankovets; L. E. Fedichkin. Metric on the Space of Quantum Processes. Informatics and Automation, Noncommutative Analysis and Quantum Information Theory, Tome 324 (2024), pp. 179-187. http://geodesic.mathdoc.fr/item/TRSPY_2024_324_a15/