Metric on the Space of Quantum Processes
Informatics and Automation, Noncommutative Analysis and Quantum Information Theory, Tome 324 (2024), pp. 179-187

Voir la notice de l'article provenant de la source Math-Net.Ru

We consider a metric $D$ describing the difference between real (noisy) and ideal processes that is based on the operator norm of the maximum deviation between the final real and ideal states of a quantum system. We discuss the properties as well as geometric and experimental interpretations of the metric.
Keywords: decoherence, quantum channels, decoherence metric, operator norm, noise level estimation.
@article{TRSPY_2024_324_a15,
     author = {E. A. Pankovets and L. E. Fedichkin},
     title = {Metric on the {Space} of {Quantum} {Processes}},
     journal = {Informatics and Automation},
     pages = {179--187},
     publisher = {mathdoc},
     volume = {324},
     year = {2024},
     language = {ru},
     url = {http://geodesic.mathdoc.fr/item/TRSPY_2024_324_a15/}
}
TY  - JOUR
AU  - E. A. Pankovets
AU  - L. E. Fedichkin
TI  - Metric on the Space of Quantum Processes
JO  - Informatics and Automation
PY  - 2024
SP  - 179
EP  - 187
VL  - 324
PB  - mathdoc
UR  - http://geodesic.mathdoc.fr/item/TRSPY_2024_324_a15/
LA  - ru
ID  - TRSPY_2024_324_a15
ER  - 
%0 Journal Article
%A E. A. Pankovets
%A L. E. Fedichkin
%T Metric on the Space of Quantum Processes
%J Informatics and Automation
%D 2024
%P 179-187
%V 324
%I mathdoc
%U http://geodesic.mathdoc.fr/item/TRSPY_2024_324_a15/
%G ru
%F TRSPY_2024_324_a15
E. A. Pankovets; L. E. Fedichkin. Metric on the Space of Quantum Processes. Informatics and Automation, Noncommutative Analysis and Quantum Information Theory, Tome 324 (2024), pp. 179-187. http://geodesic.mathdoc.fr/item/TRSPY_2024_324_a15/