Voir la notice de l'article provenant de la source Math-Net.Ru
@article{TRSPY_2023_323_a4, author = {V. I. Burenkov and D. J. Joseph}, title = {Integral {Inequalities} for {Entire} {Functions} of {Exponential} {Type} in {Morrey} {Spaces}}, journal = {Informatics and Automation}, pages = {87--106}, publisher = {mathdoc}, volume = {323}, year = {2023}, language = {ru}, url = {http://geodesic.mathdoc.fr/item/TRSPY_2023_323_a4/} }
TY - JOUR AU - V. I. Burenkov AU - D. J. Joseph TI - Integral Inequalities for Entire Functions of Exponential Type in Morrey Spaces JO - Informatics and Automation PY - 2023 SP - 87 EP - 106 VL - 323 PB - mathdoc UR - http://geodesic.mathdoc.fr/item/TRSPY_2023_323_a4/ LA - ru ID - TRSPY_2023_323_a4 ER -
V. I. Burenkov; D. J. Joseph. Integral Inequalities for Entire Functions of Exponential Type in Morrey Spaces. Informatics and Automation, Theory of Functions of Several Real Variables and Its Applications, Tome 323 (2023), pp. 87-106. http://geodesic.mathdoc.fr/item/TRSPY_2023_323_a4/
[1] O. V. Besov, V. P. Il'in, and S. M. Nikol'skii, Integral Representations of Functions and Imbedding Theorems, v. 1, 2, 1st ed., J. Wiley Sons, New York, 1978 | MR | MR | Zbl
[2] Burenkov V.I., Sobolev spaces on domains, Teubner-Texte Math., 137, B. G. Teubner, Stuttgart, 1997 | MR
[3] Burenkov V.I., “Recent progress in studying the boundedness of classical operators of real analysis in general Morrey-type spaces. I”, Eurasian Math. J., 3:3 (2012), 11–32 | MR | Zbl
[4] Burenkov V.I., “Recent progress in studying the boundedness of classical operators of real analysis in general Morrey-type spaces. II”, Eurasian Math. J., 4:1 (2013), 21–45 | MR | Zbl
[5] Burenkov V.I., Guliyev V.S., Tararykova T.V., “Comparison of Morrey spaces and Nikol'skii spaces”, Eurasian Math. J., 12:1 (2021), 9–20 | DOI | MR | Zbl
[6] Burenkov V.I., Joseph D.J., “Inequalities for entire functions of exponential type in Morrey spaces”, Eurasian Math. J., 13:3 (2022), 92–99 | DOI | MR | Zbl
[7] V. I. Burenkov and T. V. Tararykova, “An analog of Young's inequality for convolutions of functions for general Morrey-type spaces”, Proc. Steklov Inst. Math., 293 (2016), 107–126 | DOI | DOI | MR | Zbl
[8] M. L. Gol'dman, “The description of traces for certain function spaces”, Proc. Steklov Inst. Math., 150 (1981), 105–133 | Zbl | Zbl
[9] Guliyev V.S., “Generalized weighted Morrey spaces and higher order commutators of sublinear operators”, Eurasian Math. J., 3:3 (2012), 33–61 | MR | Zbl
[10] Ibragimov I.I., “Ekstremalnye zadachi v klasse tselykh funktsii eksponentsialnogo tina”, UMN, 12:3 (1957), 323–328 | MR | Zbl
[11] I. I. Ibragimov, “Some inequalities for entire functions of exponential type”, Am. Math. Soc. Transl., Ser. 2,, 43 (1964), 155–167 | Zbl | Zbl
[12] Ibragimov I.I., Teoriya priblizheniya tselymi funktsiyami, Elm, Baku, 1979
[13] I. I. Ibragimov and A. S. Dzhafarov, “On some inequalities for an entire function of finite degree and its derivatives”, Sov. Math., Dokl., 2 (1961), 699–702 | MR | Zbl
[14] Lemarié-Rieusset P.-G., “The role of Morrey spaces in the study of Navier–Stokes and Euler equations”, Eurasian Math. J., 3:3 (2012), 62–93 | MR | Zbl
[15] Nikolskii S.M., “Nekotorye neravenstva dlya tselykh funktsii konechnoi stepeni mnogikh peremennykh i ikh primenenie”, DAN SSSR, 76:6 (1951), 785–788 | Zbl
[16] Nikolskii S.M., “Neravenstva dlya tselykh funktsii konechnoi stepeni i ikh primenenie v teorii differentsiruemykh funktsii mnogikh peremennykh”, Tr. MIAN, 38 (1951), 244–278 | Zbl
[17] S. M. Nikol'skii, Approximation of Functions of Several Variables and Imbedding Theorems, Grundl. Math. Wiss., 205, Springer, Berlin, 1975 | MR | Zbl
[18] Ragusa M.A., “Operators in Morrey type spaces and applications”, Eurasian Math. J., 3:3 (2012), 94–109 | MR | Zbl
[19] Sickel W., “Smoothness spaces related to Morrey spaces—a survey. I”, Eurasian Math. J., 3:3 (2012), 110–149 | MR | Zbl
[20] Sickel W., “Smoothness spaces related to Morrey spaces—a survey. II”, Eurasian Math. J., 4:1 (2013), 82–124 | MR | Zbl
[21] A. F. Timan, Theory of Approximation of Functions of a Real Variable, Pergamon Press, Oxford, 1963 | MR | Zbl
[22] V. S. Vladimirov, Equations of Mathematical Physics, URSS, Moscow, 1996 | MR | MR