Bourgain--Morrey Spaces Mixed with Structure of Besov Spaces
Informatics and Automation, Theory of Functions of Several Real Variables and Its Applications, Tome 323 (2023), pp. 252-305

Voir la notice de l'article provenant de la source Math-Net.Ru

Bourgain–Morrey spaces $\mathcal {M}^p_{q,r}(\mathbb R^n)$, generalizing what was introduced by J. Bourgain, play an important role in the study related to the Strichartz estimate and the nonlinear Schrödinger equation. In this article, via adding an extra exponent $\tau $, the authors creatively introduce a new class of function spaces, called Besov–Bourgain–Morrey spaces $\mathcal {M}\dot {B}^{p,\tau }_{q,r}(\mathbb R^n)$, which is a bridge connecting Bourgain–Morrey spaces $\mathcal {M}^p_{q,r}(\mathbb R^n)$ with amalgam-type spaces $(L^q,\ell ^r)^p(\mathbb R^n)$. By making full use of the Fatou property of block spaces in the weak local topology of $L^{q'}(\mathbb R^n)$, the authors give both predual and dual spaces of $\mathcal {M}\dot {B}^{p,\tau }_{q,r}(\mathbb R^n)$. Applying these properties and the Calderón product, the authors also establish the complex interpolation of $\mathcal {M}\dot {B}^{p,\tau }_{q,r}(\mathbb R^n)$. Via fully using fine geometrical properties of dyadic cubes, the authors then give an equivalent norm of $\|\kern 1pt{\cdot }\kern 1pt\|_{\mathcal {M}\dot {B}^{p,\tau }_{q,r}(\mathbb R^n)}$ having an integral expression, which further induces a boundedness criterion of operators on $\mathcal {M}\dot {B}^{p,\tau }_{q,r}(\mathbb R^n)$. Applying this criterion, the authors obtain the boundedness on $\mathcal {M}\dot {B}^{p,\tau }_{q,r}(\mathbb R^n)$ of classical operators including the Hardy–Littlewood maximal operator, the fractional integral, and the Calderón–Zygmund operator.
Keywords: (Besov–)Bourgain–Morrey space, duality, maximal operator.
Mots-clés : amalgam-type space, complex interpolation
@article{TRSPY_2023_323_a14,
     author = {Yirui Zhao and Yoshihiro Sawano and Jin Tao and Dachun Yang and Wen Yuan},
     title = {Bourgain--Morrey {Spaces} {Mixed} with {Structure} of {Besov} {Spaces}},
     journal = {Informatics and Automation},
     pages = {252--305},
     publisher = {mathdoc},
     volume = {323},
     year = {2023},
     language = {ru},
     url = {http://geodesic.mathdoc.fr/item/TRSPY_2023_323_a14/}
}
TY  - JOUR
AU  - Yirui Zhao
AU  - Yoshihiro Sawano
AU  - Jin Tao
AU  - Dachun Yang
AU  - Wen Yuan
TI  - Bourgain--Morrey Spaces Mixed with Structure of Besov Spaces
JO  - Informatics and Automation
PY  - 2023
SP  - 252
EP  - 305
VL  - 323
PB  - mathdoc
UR  - http://geodesic.mathdoc.fr/item/TRSPY_2023_323_a14/
LA  - ru
ID  - TRSPY_2023_323_a14
ER  - 
%0 Journal Article
%A Yirui Zhao
%A Yoshihiro Sawano
%A Jin Tao
%A Dachun Yang
%A Wen Yuan
%T Bourgain--Morrey Spaces Mixed with Structure of Besov Spaces
%J Informatics and Automation
%D 2023
%P 252-305
%V 323
%I mathdoc
%U http://geodesic.mathdoc.fr/item/TRSPY_2023_323_a14/
%G ru
%F TRSPY_2023_323_a14
Yirui Zhao; Yoshihiro Sawano; Jin Tao; Dachun Yang; Wen Yuan. Bourgain--Morrey Spaces Mixed with Structure of Besov Spaces. Informatics and Automation, Theory of Functions of Several Real Variables and Its Applications, Tome 323 (2023), pp. 252-305. http://geodesic.mathdoc.fr/item/TRSPY_2023_323_a14/