Hierarchical Schr\"odinger Operators with Singular Potentials
Informatics and Automation, Theory of Functions of Several Real Variables and Its Applications, Tome 323 (2023), pp. 17-52
Voir la notice de l'article provenant de la source Math-Net.Ru
We consider the operator $H=L+V$ that is a perturbation of the Taibleson–Vladimirov operator $L=\mathfrak {D}^\alpha $ by a potential $V(x)=b\|x\|^{-\alpha }$, where $\alpha >0$ and $b\geq b_*$. We prove that the operator $H$ is closable and its minimal closure is a nonnegative definite self-adjoint operator (where the critical value $b_*$ depends on $\alpha $). While the operator $H$ is nonnegative definite, the potential $V(x)$ may well take negative values as $b_*0$ for all $0\alpha 1$. The equation $Hu=v$ admits a Green function $g_H(x,y)$, that is, the integral kernel of the operator $H^{-1}$. We obtain sharp lower and upper bounds on the ratio of the Green functions $g_H(x,y)$ and $g_L(x,y)$.
Keywords:
ultrametric space, $p$-adic numbers, Dyson model, hierarchical Laplacian, hierarchical Schrödinger operator, Vladimirov operator.
@article{TRSPY_2023_323_a1,
author = {Alexander Bendikov and Alexander Grigor'yan and Stanislav Molchanov},
title = {Hierarchical {Schr\"odinger} {Operators} with {Singular} {Potentials}},
journal = {Informatics and Automation},
pages = {17--52},
publisher = {mathdoc},
volume = {323},
year = {2023},
language = {ru},
url = {http://geodesic.mathdoc.fr/item/TRSPY_2023_323_a1/}
}
TY - JOUR AU - Alexander Bendikov AU - Alexander Grigor'yan AU - Stanislav Molchanov TI - Hierarchical Schr\"odinger Operators with Singular Potentials JO - Informatics and Automation PY - 2023 SP - 17 EP - 52 VL - 323 PB - mathdoc UR - http://geodesic.mathdoc.fr/item/TRSPY_2023_323_a1/ LA - ru ID - TRSPY_2023_323_a1 ER -
Alexander Bendikov; Alexander Grigor'yan; Stanislav Molchanov. Hierarchical Schr\"odinger Operators with Singular Potentials. Informatics and Automation, Theory of Functions of Several Real Variables and Its Applications, Tome 323 (2023), pp. 17-52. http://geodesic.mathdoc.fr/item/TRSPY_2023_323_a1/