Analytic Properties of Solutions to the Equation of Internal Gravity Waves with Flows for Critical Modes of Wave Generation
Informatics and Automation, Modern Methods of Mechanics, Tome 322 (2023), pp. 71-82.

Voir la notice de l'article provenant de la source Math-Net.Ru

Issues related to the statement of problems of describing the dynamics of linear internal gravity waves in stratified media with horizontal shear flows in critical modes of wave generation are considered. Model physical statements of problems in which critical levels may arise are discussed in the two-dimensional case. Analytic properties of the solutions near critical levels are studied. A system describing a flow of a stratified medium incident on an obstacle behind which outgoing waves may arise is discussed, in which case a singularity at the critical level is formed far away from the obstacle. Asymptotics of the solutions near the critical level are constructed and expressed in terms of the incomplete gamma function.
Keywords: internal gravity waves, shear flows, buoyancy frequency, Taylor–Goldstein equation, critical level.
@article{TRSPY_2023_322_a5,
     author = {V. V. Bulatov},
     title = {Analytic {Properties} of {Solutions} to the {Equation} of {Internal} {Gravity} {Waves} with {Flows} for {Critical} {Modes} of {Wave} {Generation}},
     journal = {Informatics and Automation},
     pages = {71--82},
     publisher = {mathdoc},
     volume = {322},
     year = {2023},
     language = {ru},
     url = {http://geodesic.mathdoc.fr/item/TRSPY_2023_322_a5/}
}
TY  - JOUR
AU  - V. V. Bulatov
TI  - Analytic Properties of Solutions to the Equation of Internal Gravity Waves with Flows for Critical Modes of Wave Generation
JO  - Informatics and Automation
PY  - 2023
SP  - 71
EP  - 82
VL  - 322
PB  - mathdoc
UR  - http://geodesic.mathdoc.fr/item/TRSPY_2023_322_a5/
LA  - ru
ID  - TRSPY_2023_322_a5
ER  - 
%0 Journal Article
%A V. V. Bulatov
%T Analytic Properties of Solutions to the Equation of Internal Gravity Waves with Flows for Critical Modes of Wave Generation
%J Informatics and Automation
%D 2023
%P 71-82
%V 322
%I mathdoc
%U http://geodesic.mathdoc.fr/item/TRSPY_2023_322_a5/
%G ru
%F TRSPY_2023_322_a5
V. V. Bulatov. Analytic Properties of Solutions to the Equation of Internal Gravity Waves with Flows for Critical Modes of Wave Generation. Informatics and Automation, Modern Methods of Mechanics, Tome 322 (2023), pp. 71-82. http://geodesic.mathdoc.fr/item/TRSPY_2023_322_a5/

[1] Alias A., Grimshaw R.H.J., Khusnutdinova K.R., “Coupled Ostrovsky equations for internal waves in a shear flow”, Phys. Fluids, 26:12 (2014), 126603 | DOI

[2] Basovich A.Ya., Tsimring L.Sh., “Internal waves in a horizontally inhomogeneous flow”, J. Fluid Mech., 142 (1984), 233–249 | DOI | MR | Zbl

[3] Borovikov V.A., Uniform stationary phase method, IEE Electromagn. Waves Ser., 40, Inst. Electr. Eng., London, 1994 | MR | Zbl

[4] Bouruet-Aubertot P., Thorpe S.A., “Numerical experiments on internal gravity waves in an accelerating shear flow”, Dyn. Atmos. Oceans, 29:1 (1999), 41–63 | DOI

[5] Bretherton F.P., “The propagation of groups of internal gravity waves in a shear flow”, Q. J. R. Metereol. Soc., 92:394 (1966), 466–480 | DOI

[6] Broutman D., Brandt L., Rottman J.W., Taylor C.K., “A WKB derivation for internal waves generated by a horizontally moving body in a thermocline”, Wave Motion, 105 (2021), 102759 | DOI | MR

[7] Broutman D., Rottman J.W., “A simplified Fourier method for computing the internal wavefield generated by an oscillating source in a horizontally moving, depth-dependent background”, Phys. Fluids, 16:10 (2004), 3682–3689 | DOI

[8] V. V. Bulatov, New Problems of Mathematical Modeling of Wave Dynamics of Stratified Media, OntoPrint, Moscow, 2021 (in Russian)

[9] V. V. Bulatov, “Analytic properties of the Green's function for the equation of internal gravitational waves in a stratified medium with shear flows”, Theor. Math. Phys., 211:2 (2022), 611–624 | DOI | DOI | MR | Zbl

[10] V. V. Bulatov and Yu. V. Vladimirov, Waves in Stratified Media, Nauka, Moscow, 2015 (in Russian)

[11] Bulatov V.V., Vladimirov Yu.V., “Dynamics of internal gravity waves in the ocean with shear flows”, Russ. J. Earth Sci., 20 (2020), ES4004 | DOI

[12] Bulatov V., Vladimirov Yu., “Analytical approximations of dispersion relations for internal gravity waves equation with shear flows”, Symmetry, 12:11 (2020), 1865 | DOI

[13] V. V. Bulatov, Yu. V. Vladimirov, and I. Yu. Vladimirov, “Internal gravity waves from an oscillating source in the ocean”, Izv., Atmos. Ocean. Phys., 57:3 (2021), 321–328 | DOI | DOI

[14] V. V. Bulatov, Yu. V. Vladimirov, and I. Yu. Vladimirov, “Phase structure of internal gravity waves in the ocean with shear flows”, Phys. Oceanogr., 28:4 (2021), 438–453 | DOI

[15] Carpenter J.R., Balmforth N.J., Lawrence G.A., “Identifying unstable modes in stratified shear layers”, Phys. Fluids, 22:5 (2010), 054104 | DOI | Zbl

[16] Churilov S., “On the stability analysis of sharply stratified shear flows”, Ocean Dyn., 68:7 (2018), 867–884 | DOI

[17] Fabrikant A.L., Stepanyants Yu.A., Propagation of waves in shear flows, World Scientific, Singapore, 1998 | MR

[18] Fraternale F., Domenicale L., Staffilani G., Tordella D., “Internal waves in sheared flows: Lower bound of the vorticity growth and propagation discontinuities in the parameter space”, Phys. Rev. E, 97:6 (2018), 063102 | DOI

[19] Frey D.I., Novigatsky A.N., Kravchishina M.D., Morozov E.G., “Water structure and currents in the Bear Island Trough in July–August 2017”, Russ. J. Earth Sci., 17 (2017), ES3003 | DOI

[20] A. A. Gavrilieva, Yu. G. Gubarev, and M. P. Lebedev, “The Miles theorem and new particular solutions to the Taylor–Goldstein equation”, Lobachevskii J. Math., 38:3 (2017), 560–570 | DOI | MR

[21] Gavril'eva A.A., Gubarev Yu.G., Lebedev M.P., “The Miles theorem and the first boundary value problem for the Taylor–Goldstein equation”, J. Appl. Ind. Math., 13:3 (2019), 460–471 | DOI | MR | Zbl

[22] Gnevyshev V., Badulin S., “Wave patterns of gravity–capillary waves from moving localized sources”, Fluids, 5:4 (2020), 219 | DOI

[23] Hirota M., Morrison P.J., “Stability boundaries and sufficient stability conditions for stably stratified, monotonic shear flows”, Phys. Lett. A, 380:21 (2016), 1856–1860 | DOI | Zbl

[24] Howland C.J., Taylor J.R., Caulfield C.P., “Shear-induced breaking of internal gravity waves”, J. Fluid Mech., 921 (2021), A24 | DOI | MR | Zbl

[25] E. Kamke, Differentialgleichungen: Lösungsmethoden und Lösungen. I: Gewöhnliche Differentialgleichungen, Teubner, Stuttgart, 1977 | MR | Zbl

[26] Khimchenko E.E., Frey D.I., Morozov E.G., “Tidal internal waves in the Bransfield Strait, Antarctica”, Russ. J. Earth Sci., 20 (2020), ES2006 | DOI

[27] Kravtsov Yu.A., Orlov Yu.I., Caustics, catastrophes and wave fields, Springer, Berlin, 1999 | MR | Zbl

[28] M. A. Lavrent'ev and B. V. Shabat, Methods of the Theory of Functions of a Complex Variable, Nauka, Moscow, 1987 (in Russian) | MR | Zbl

[29] J. Lighthill, Waves in Fluids, Cambridge Univ. Press, Cambridge, 2001 | MR | MR | Zbl

[30] Meunier P., Le Dizès S., Redekopp L., Spedding G.R., “Internal waves generated by a stratified wake: Experiment and theory”, J. Fluid Mech., 846 (2018), 752–788 | DOI | MR

[31] Miles J.W., “On the stability of heterogeneous shear flows”, J. Fluid Mech., 10:4 (1961), 496–508 | DOI | MR | Zbl

[32] Miropol'sky Yu.Z., Dynamics of internal gravity waves in the ocean, Kluwer, Dordrecht, 2001 | MR | Zbl

[33] Morozov E.G., Oceanic internal tides: Observations, analysis and modeling: A global view, Springer, Cham, 2018

[34] Morozov E.G., Parrilla-Barrera G., Velarde M.G., Scherbinin A.D., “The Straits of Gibraltar and Kara Gates: A comparison of internal tides”, Oceanol. acta, 26:3 (2003), 231–241 | DOI

[35] Morozov E.G., Tarakanov R.Yu., Frey D.I., Bottom gravity currents and overflows in deep channels of the Atlantic Ocean: Observations, analysis, and modeling, Springer, Cham, 2021

[36] Morozov E.G., Tarakanov R.Yu., Frey D.I., Demidova T.A., Makarenko N.I., “Bottom water flows in the tropical fractures of the Northern Mid-Atlantic Ridge”, J. Oceanogr., 74:2 (2018), 147–167 | DOI

[37] A. H. Nayfeh, Introduction to Perturbation Techniques, J. Wiley Sons, New York, 1981 | MR | Zbl

[38] Pedlosky J., Waves in the ocean and atmosphere: Introduction to wave dynamics, Springer, Berlin, 2010

[39] Shugan I., Chen Y.-Y., “Kinematics of the ship's wake in the presence of a shear flow”, J. Mar. Sci. Eng., 9:1 (2021), 7 | DOI

[40] Yu. V. Sidorov, M. V. Fedoryuk, and M. I. Shabunin, Lectures on the Theory of Functions of a Complex Variable, Mir, Moscow, 1985 | MR | MR

[41] A. A. Slepyshev and N. V. Laktionova, “Vertical transport of momentum by internal waves in a shear current”, Izv., Atmos. Ocean. Phys., 55:6 (2019), 662–668 | DOI | DOI

[42] Slepyshev A.A., Vorotnikov D.I., “Generation of vertical fine structure by internal waves in a shear flow”, Open J. Fluid Mech., 9:2 (2019), 140–157

[43] Sutherland B.R., Internal gravity waves, Cambridge Univ. Press, Cambridge, 2010 | MR | Zbl

[44] P. N. Svirkunov and M. V. Kalashnik, “Phase patterns of dispersive waves from moving localized sources”, Phys. Usp., 57:1 (2014), 80–91 | DOI | DOI

[45] The ocean in motion: Circulation, waves, polar oceanography, Springer Oceanogr., ed. by M.G. Velarde, R.Yu. Tarakanov, A.V. Marchenko, Springer, Cham, 2018

[46] Vlasenko V., Stashchuk N., Hutter K., Baroclinic tides: Theoretical modeling and observational evidence, Cambridge Univ. Press, New York, 2005 | Zbl

[47] N. N. Vorob'ev, Theory of Series, Lan', St. Petersburg, 2002 (in Russian)

[48] G. B. Whitham, Linear and Nonlinear Waves, J. Wiley Sons, New York, 1974 | MR | Zbl

[49] E. T. Whittaker and G. N. Watson, A Course of Modern Analysis, Cambridge Univ. Press, Cambridge, 1996 | MR | Zbl

[50] Young W.R., Rhines P.B., Garrett C.J.R., “Shear-flow dispersion, internal waves and horizontal mixing in the ocean”, J. Phys. Oceanogr., 12:6 (1982), 515–527 | 2.0.CO;2 class='badge bg-secondary rounded-pill ref-badge extid-badge'>DOI