Nonuniqueness of a Self-similar Solution to the Riemann Problem for Elastic Waves in Media with a Negative Nonlinearity Parameter
Informatics and Automation, Modern Methods of Mechanics, Tome 322 (2023), pp. 251-265

Voir la notice de l'article provenant de la source Math-Net.Ru

We study self-similar solutions of the Riemann problem in the nonuniqueness region for weakly anisotropic elastic media with a negative nonlinearity parameter. We show that all discontinuities contained in the solutions in the nonuniqueness region have a stationary structure. We also show that in the nonuniqueness region one can construct two types of self-similar solutions.
Keywords: shock waves, Riemann problem, nonuniqueness of self-similar solutions.
@article{TRSPY_2023_322_a19,
     author = {A. P. Chugainova and R. R. Polekhina},
     title = {Nonuniqueness of a {Self-similar} {Solution} to the {Riemann} {Problem} for {Elastic} {Waves} in {Media} with a {Negative} {Nonlinearity} {Parameter}},
     journal = {Informatics and Automation},
     pages = {251--265},
     publisher = {mathdoc},
     volume = {322},
     year = {2023},
     language = {ru},
     url = {http://geodesic.mathdoc.fr/item/TRSPY_2023_322_a19/}
}
TY  - JOUR
AU  - A. P. Chugainova
AU  - R. R. Polekhina
TI  - Nonuniqueness of a Self-similar Solution to the Riemann Problem for Elastic Waves in Media with a Negative Nonlinearity Parameter
JO  - Informatics and Automation
PY  - 2023
SP  - 251
EP  - 265
VL  - 322
PB  - mathdoc
UR  - http://geodesic.mathdoc.fr/item/TRSPY_2023_322_a19/
LA  - ru
ID  - TRSPY_2023_322_a19
ER  - 
%0 Journal Article
%A A. P. Chugainova
%A R. R. Polekhina
%T Nonuniqueness of a Self-similar Solution to the Riemann Problem for Elastic Waves in Media with a Negative Nonlinearity Parameter
%J Informatics and Automation
%D 2023
%P 251-265
%V 322
%I mathdoc
%U http://geodesic.mathdoc.fr/item/TRSPY_2023_322_a19/
%G ru
%F TRSPY_2023_322_a19
A. P. Chugainova; R. R. Polekhina. Nonuniqueness of a Self-similar Solution to the Riemann Problem for Elastic Waves in Media with a Negative Nonlinearity Parameter. Informatics and Automation, Modern Methods of Mechanics, Tome 322 (2023), pp. 251-265. http://geodesic.mathdoc.fr/item/TRSPY_2023_322_a19/