Voir la notice de l'article provenant de la source Math-Net.Ru
@article{TRSPY_2023_322_a19, author = {A. P. Chugainova and R. R. Polekhina}, title = {Nonuniqueness of a {Self-similar} {Solution} to the {Riemann} {Problem} for {Elastic} {Waves} in {Media} with a {Negative} {Nonlinearity} {Parameter}}, journal = {Informatics and Automation}, pages = {251--265}, publisher = {mathdoc}, volume = {322}, year = {2023}, language = {ru}, url = {http://geodesic.mathdoc.fr/item/TRSPY_2023_322_a19/} }
TY - JOUR AU - A. P. Chugainova AU - R. R. Polekhina TI - Nonuniqueness of a Self-similar Solution to the Riemann Problem for Elastic Waves in Media with a Negative Nonlinearity Parameter JO - Informatics and Automation PY - 2023 SP - 251 EP - 265 VL - 322 PB - mathdoc UR - http://geodesic.mathdoc.fr/item/TRSPY_2023_322_a19/ LA - ru ID - TRSPY_2023_322_a19 ER -
%0 Journal Article %A A. P. Chugainova %A R. R. Polekhina %T Nonuniqueness of a Self-similar Solution to the Riemann Problem for Elastic Waves in Media with a Negative Nonlinearity Parameter %J Informatics and Automation %D 2023 %P 251-265 %V 322 %I mathdoc %U http://geodesic.mathdoc.fr/item/TRSPY_2023_322_a19/ %G ru %F TRSPY_2023_322_a19
A. P. Chugainova; R. R. Polekhina. Nonuniqueness of a Self-similar Solution to the Riemann Problem for Elastic Waves in Media with a Negative Nonlinearity Parameter. Informatics and Automation, Modern Methods of Mechanics, Tome 322 (2023), pp. 251-265. http://geodesic.mathdoc.fr/item/TRSPY_2023_322_a19/