Voir la notice de l'article provenant de la source Math-Net.Ru
@article{TRSPY_2023_322_a16, author = {D. V. Treschev}, title = {On {Isochronicity}}, journal = {Informatics and Automation}, pages = {206--232}, publisher = {mathdoc}, volume = {322}, year = {2023}, language = {ru}, url = {http://geodesic.mathdoc.fr/item/TRSPY_2023_322_a16/} }
D. V. Treschev. On Isochronicity. Informatics and Automation, Modern Methods of Mechanics, Tome 322 (2023), pp. 206-232. http://geodesic.mathdoc.fr/item/TRSPY_2023_322_a16/
[1] Bolotin S., MacKay R.S., “Isochronous potentials”, Localization and energy transfer in nonlinear systems: Proc. 3rd conf. (San Lorenzo de El Escorial, Spain, 2002), World Scientific, River Edge, NJ, 2003, 217–224 | DOI | Zbl
[2] Calogero F., Isochronous systems, Oxford Univ. Press, Oxford, 2008 | MR | Zbl
[3] Gorni G., Zampieri G., “Global isochronous potentials”, Qual. Theory Dyn. Syst., 12:2 (2013), 407–416 | DOI | MR | Zbl
[4] Schastnyy V., Treschev D., “On local integrability in billiard dynamics”, Exp. Math., 28:3 (2019), 362–368 | DOI | MR | Zbl
[5] Stillinger F.H., Stillinger D.K., “Pseudoharmonic oscillators and inadequacy of semiclassical quantization”, J. Phys. Chem., 93:19 (1989), 6890–6892 | DOI
[6] Treschev D., “Billiard map and rigid rotation”, Physica D, 255 (2013), 31–34 | DOI | MR | Zbl
[7] D. V. Treschev, “On a conjugacy problem in billiard dynamics”, Proc. Steklov Inst. Math., 289 (2015), 291–299 | DOI | DOI | MR | Zbl
[8] Treschev D., “A locally integrable multi-dimensional billiard system”, Discrete Contin. Dyn. Syst., 37:10 (2017), 5271–5284 | DOI | MR | Zbl
[9] Treschev D.V., “Isochronicity in 1 DOF”, Regul. Chaotic Dyn., 27:2 (2022), 123–131 | DOI | MR | Zbl
[10] Treschev D.V., “Hamiltonian systems with a functional parameter in the form of a potential”, Russ. J. Math. Phys., 29:3 (2022), 402–412 | DOI | MR | Zbl