On Isochronicity
Informatics and Automation, Modern Methods of Mechanics, Tome 322 (2023), pp. 206-232.

Voir la notice de l'article provenant de la source Math-Net.Ru

We obtain a complete set of explicit necessary and sufficient conditions for the isochronicity of a Hamiltonian system with one degree of freedom. The conditions are presented in terms of the Taylor coefficients of the Hamiltonian function and have the form of an infinite collection of polynomial equations.
Mots-clés : oscillations
Keywords: isochronicity, superintegrability.
@article{TRSPY_2023_322_a16,
     author = {D. V. Treschev},
     title = {On {Isochronicity}},
     journal = {Informatics and Automation},
     pages = {206--232},
     publisher = {mathdoc},
     volume = {322},
     year = {2023},
     language = {ru},
     url = {http://geodesic.mathdoc.fr/item/TRSPY_2023_322_a16/}
}
TY  - JOUR
AU  - D. V. Treschev
TI  - On Isochronicity
JO  - Informatics and Automation
PY  - 2023
SP  - 206
EP  - 232
VL  - 322
PB  - mathdoc
UR  - http://geodesic.mathdoc.fr/item/TRSPY_2023_322_a16/
LA  - ru
ID  - TRSPY_2023_322_a16
ER  - 
%0 Journal Article
%A D. V. Treschev
%T On Isochronicity
%J Informatics and Automation
%D 2023
%P 206-232
%V 322
%I mathdoc
%U http://geodesic.mathdoc.fr/item/TRSPY_2023_322_a16/
%G ru
%F TRSPY_2023_322_a16
D. V. Treschev. On Isochronicity. Informatics and Automation, Modern Methods of Mechanics, Tome 322 (2023), pp. 206-232. http://geodesic.mathdoc.fr/item/TRSPY_2023_322_a16/

[1] Bolotin S., MacKay R.S., “Isochronous potentials”, Localization and energy transfer in nonlinear systems: Proc. 3rd conf. (San Lorenzo de El Escorial, Spain, 2002), World Scientific, River Edge, NJ, 2003, 217–224 | DOI | Zbl

[2] Calogero F., Isochronous systems, Oxford Univ. Press, Oxford, 2008 | MR | Zbl

[3] Gorni G., Zampieri G., “Global isochronous potentials”, Qual. Theory Dyn. Syst., 12:2 (2013), 407–416 | DOI | MR | Zbl

[4] Schastnyy V., Treschev D., “On local integrability in billiard dynamics”, Exp. Math., 28:3 (2019), 362–368 | DOI | MR | Zbl

[5] Stillinger F.H., Stillinger D.K., “Pseudoharmonic oscillators and inadequacy of semiclassical quantization”, J. Phys. Chem., 93:19 (1989), 6890–6892 | DOI

[6] Treschev D., “Billiard map and rigid rotation”, Physica D, 255 (2013), 31–34 | DOI | MR | Zbl

[7] D. V. Treschev, “On a conjugacy problem in billiard dynamics”, Proc. Steklov Inst. Math., 289 (2015), 291–299 | DOI | DOI | MR | Zbl

[8] Treschev D., “A locally integrable multi-dimensional billiard system”, Discrete Contin. Dyn. Syst., 37:10 (2017), 5271–5284 | DOI | MR | Zbl

[9] Treschev D.V., “Isochronicity in 1 DOF”, Regul. Chaotic Dyn., 27:2 (2022), 123–131 | DOI | MR | Zbl

[10] Treschev D.V., “Hamiltonian systems with a functional parameter in the form of a potential”, Russ. J. Math. Phys., 29:3 (2022), 402–412 | DOI | MR | Zbl