Longitudinal--Torsional Waves in Nonlinear Elastic Rods
Informatics and Automation, Modern Methods of Mechanics, Tome 322 (2023), pp. 157-166.

Voir la notice de l'article provenant de la source Math-Net.Ru

Previously, we have obtained a system of fourth-order hyperbolic equations describing long nonlinear small-amplitude longitudinal–torsional waves propagating along an elastic rod. Waves of two types, fast and slow, propagate in each direction along the rod. In the present paper, based on this system of equations, we derive a second-order hyperbolic system that describes longitudinal–torsional waves propagating in one direction along the rod at close velocities. The waves propagating in the opposite direction along the rod are assumed to have a negligible amplitude. We show that the variation of quantities in simple and shock waves described by the system of second-order equations obtained in this paper exactly coincides with the variation of the same quantities in the corresponding waves described by the original system of fourth-order equations, and the velocities of these waves are close. We also analyze the variation of quantities in simple (Riemann) waves and the overturning conditions for these waves.
Keywords: longitudinal–torsional waves, Riemann waves, wave overturning conditions.
@article{TRSPY_2023_322_a12,
     author = {A. G. Kulikovskii and A. P. Chugainova},
     title = {Longitudinal--Torsional {Waves} in {Nonlinear} {Elastic} {Rods}},
     journal = {Informatics and Automation},
     pages = {157--166},
     publisher = {mathdoc},
     volume = {322},
     year = {2023},
     language = {ru},
     url = {http://geodesic.mathdoc.fr/item/TRSPY_2023_322_a12/}
}
TY  - JOUR
AU  - A. G. Kulikovskii
AU  - A. P. Chugainova
TI  - Longitudinal--Torsional Waves in Nonlinear Elastic Rods
JO  - Informatics and Automation
PY  - 2023
SP  - 157
EP  - 166
VL  - 322
PB  - mathdoc
UR  - http://geodesic.mathdoc.fr/item/TRSPY_2023_322_a12/
LA  - ru
ID  - TRSPY_2023_322_a12
ER  - 
%0 Journal Article
%A A. G. Kulikovskii
%A A. P. Chugainova
%T Longitudinal--Torsional Waves in Nonlinear Elastic Rods
%J Informatics and Automation
%D 2023
%P 157-166
%V 322
%I mathdoc
%U http://geodesic.mathdoc.fr/item/TRSPY_2023_322_a12/
%G ru
%F TRSPY_2023_322_a12
A. G. Kulikovskii; A. P. Chugainova. Longitudinal--Torsional Waves in Nonlinear Elastic Rods. Informatics and Automation, Modern Methods of Mechanics, Tome 322 (2023), pp. 157-166. http://geodesic.mathdoc.fr/item/TRSPY_2023_322_a12/

[1] Chugainova A.P., Kulikovskii A.G., “Longitudinal and torsional shock waves in anisotropic elastic cylinders”, Z. angew. Math. Phys., 71:1 (2020), 17 | DOI | MR | Zbl

[2] M. Ergashov, “A study of the propagation of elastic waves in wound structures taking into account their rotation under extension”, J. Appl. Math. Mech., 56:1 (1992), 117–124 | DOI | MR | Zbl

[3] Erofeev V.I., Kazhaev V.V., Semerikova N.P., Volny v sterzhnyakh: Dispersiya, dissipatsiya, nelineinost, Fizmatlit, M., 2002

[4] V. I. Erofeev and N. V. Klyueva, “Propagation of nonlinear torsional waves in a beam made of a different-modulus material”, Mech. Solids, 38:5 (2003), 122–126

[5] A. G. Kulikovskii, “Equations describing the propagation of non-linear quasitransverse waves in a weakly non-isotropic elastic body”, J. Appl. Math. Mech., 50:4 (1986), 455–461 | DOI | Zbl

[6] A. G. Kulikovskii and A. P. Chugainova, “Long nonlinear waves in anisotropic cylinders”, Comput. Math. Math. Phys., 57:7 (2017), 1194–1200 | DOI | MR | Zbl

[7] A. G. Kulikovskii and A. P. Chugainova, “Shock waves in anisotropic cylinders”, Proc. Steklov Inst. Math., 300 (2018), 100–113 | DOI | DOI | MR | Zbl

[8] A. G. Kulikovskii and A. P. Chugainova, “Structures of non-classical discontinuities in solutions of hyperbolic systems of equations”, Russ. Math. Surv., 77:1 (2022), 47–79 | DOI | DOI | MR | Zbl

[9] A. A. Malashin, “Longitudinal, transverse, and torsion waves and oscillations in musical strings”, Dokl. Phys., 54:1 (2009), 43–46 | DOI | MR | Zbl

[10] Singh S.S., “Soliton solutions of nonlinear wave equation in finite de-formation elastic cylindrical rod by solitary wave ansatz method”, Int. J. Phys. Res., 4:1 (2016), 12–14 | DOI

[11] Sugimoto N., Yamane Y., Kakutani T., “Oscillatory structured shock waves in a nonlinear elastic rod with weak viscoelasticity”, J. Appl. Mech., 51:4 (1984), 766–772 | DOI

[12] Kh. G. Umarov, “Cauchy problem for the torsional vibration equation of a nonlinear-elastic rod of infinite length”, Mech. Solids, 54:5 (2019), 726–740 | DOI | DOI | MR | Zbl

[13] Zhang S., Liu Z., “Three kinds of nonlinear dispersive waves in elastic rods with finite deformation”, Appl. Math. Mech., 29:7 (2008), 909–917 | DOI | MR | Zbl