On Waves on the Surface of an Unstable Layer of a Viscous Fluid Flowing Down a Curved Surface
Informatics and Automation, Modern Methods of Mechanics, Tome 322 (2023), pp. 146-156.

Voir la notice de l'article provenant de la source Math-Net.Ru

We consider the evolution of linear waves of small perturbations of an unstable flow of a viscous fluid layer over a curved surface. The source of perturbations is assumed to be given by initial conditions defined in a small domain (in the limit, in the form of a $\delta $-function) or by an instantaneous localized external impact. The behavior of perturbations is described by hydrodynamic equations averaged over the thickness of the layer, with the gravity force and bottom friction taken into account (Saint-Venant equations). We study the asymptotic behavior of one-dimensional perturbations for large times. The inclination of the surface to the horizon is defined by a slowly varying function of the spatial variable. We focus on the perturbation amplitude as a function of time and the spatial variable. To study the asymptotics of perturbations, we use a simple generalization of the well-known method, based on the saddle-point technique, for finding the asymptotics of perturbations developing against a uniform background. We show that this method is equivalent to the one based on the application of the approximate WKB method for constructing solutions of differential equations. When constructing the asymptotics, it is convenient to assume that $x$ is a real variable and to allow time $t$ to take complex values.
Keywords: linear waves, fluid layer, flow over a surface, instability, asymptotics, saddle-point method, WKB method.
@article{TRSPY_2023_322_a11,
     author = {A. G. Kulikovskii and J. S. Zayko},
     title = {On {Waves} on the {Surface} of an {Unstable} {Layer} of a {Viscous} {Fluid} {Flowing} {Down} a {Curved} {Surface}},
     journal = {Informatics and Automation},
     pages = {146--156},
     publisher = {mathdoc},
     volume = {322},
     year = {2023},
     language = {ru},
     url = {http://geodesic.mathdoc.fr/item/TRSPY_2023_322_a11/}
}
TY  - JOUR
AU  - A. G. Kulikovskii
AU  - J. S. Zayko
TI  - On Waves on the Surface of an Unstable Layer of a Viscous Fluid Flowing Down a Curved Surface
JO  - Informatics and Automation
PY  - 2023
SP  - 146
EP  - 156
VL  - 322
PB  - mathdoc
UR  - http://geodesic.mathdoc.fr/item/TRSPY_2023_322_a11/
LA  - ru
ID  - TRSPY_2023_322_a11
ER  - 
%0 Journal Article
%A A. G. Kulikovskii
%A J. S. Zayko
%T On Waves on the Surface of an Unstable Layer of a Viscous Fluid Flowing Down a Curved Surface
%J Informatics and Automation
%D 2023
%P 146-156
%V 322
%I mathdoc
%U http://geodesic.mathdoc.fr/item/TRSPY_2023_322_a11/
%G ru
%F TRSPY_2023_322_a11
A. G. Kulikovskii; J. S. Zayko. On Waves on the Surface of an Unstable Layer of a Viscous Fluid Flowing Down a Curved Surface. Informatics and Automation, Modern Methods of Mechanics, Tome 322 (2023), pp. 146-156. http://geodesic.mathdoc.fr/item/TRSPY_2023_322_a11/

[1] Akan A.O., Open channel hydraulics, Elsevier, Oxford, 2006

[2] S. V. Alekseenko, V. E. Nakoriakov, and B. G. Pokusaev, Wave Flow of Liquid Films, Begell House, Redding, CT, 1994

[3] Chang H.-C., Demekhin E.A., Complex wave dynamics on thin films, Elsevier, Amsterdam, 2002 | MR

[4] Chow V.T., Open-channel hydraulics, McGraw-Hill, New York, 1959

[5] Craster R.V., Matar O.K., “Dynamics and stability of thin liquid films”, Rev. Mod. Phys., 81:3 (2009), 1131–1198 | DOI

[6] Di Cristo C., Vacca A., “On the convective nature of roll waves instability”, J. Appl. Math., 2005:3 (2005), 259–271 | DOI | MR | Zbl

[7] Heading J., An introduction to phase-integral methods, J. Wiley and Sons, New York, 1962 | MR | Zbl

[8] Huerre P., Monkewitz P.A., “Local and global instabilities in spatially developing flows”, Annu. Rev. Fluid Mech., 22 (1990), 473–537 | DOI | MR | Zbl

[9] Kalliadasis S., Ruyer-Quil C., Scheid B., Velarde M.G., Falling liquid films, Appl. Math. Sci., 176, Springer, London, 2012 | DOI | MR | Zbl

[10] Yu. A. Kravtsov and Yu. I. Orlov, Geometrical Optics of Inhomogeneous Media, Springer, Berlin, 1990 | MR | MR

[11] A. G. Kulikovskii, “Evolution of perturbations on a steady weakly inhomogeneous background. Complex Hamiltonian equations”, J. Appl. Math. Mech., 81:1 (2017), 1–10 | DOI | MR | Zbl

[12] Kulikovskii A., Zayko J., “Asymptotic behavior of localized disturbance in a viscous fluid flow down an incline”, Phys. Fluids, 34:3 (2022), 034119 | DOI

[13] E. M. Lifshitz and L. P. Pitaevskii, Physical Kinetics, L. D. Landau and E. M. Lifshitz, Course of Theoretical Physics, 10, Pergamon, Oxford, 1981 | MR | MR

[14] Maslov V.P., Teoriya vozmuschenii i asimptoticheskie metody, Izd-vo MGU, M., 1965

[15] V. P. Maslov, Operator Methods, Mir, Moscow, 1982 | MR | MR | Zbl

[16] A. A. Rukhadze and V. P. Silin, “Method of geometrical optics in the electrodynamics of an inhomogeneous plasma”, Phys. Usp., 7:2 (1964), 209–229 | DOI | DOI | MR | Zbl

[17] Thual O., Plumerault L.-R., Astruc D., “Linear stability of the 1D Saint-Venant equations and drag parameterizations”, J. Hydraul. Res., 48:3 (2010), 348–353 | DOI

[18] Trowbridge J.H., “Instability of concentrated free surface flows”, J. Geophys. Res., 92:C9 (1987), 9523–9530 | DOI

[19] V. V. Vedernikov, “Conditions at the front of a release wave that breaks the steady motion of a real fluid”, Dokl. Akad. Nauk SSSR, 48:4 (1945), 256–259

[20] Zanuttigh B., Lamberti A., “Instability and surge development in debris flows”, Rev. Geophys., 45:3 (2007), RG3006 | DOI