Voir la notice de l'article provenant de la source Math-Net.Ru
@article{TRSPY_2023_322_a11, author = {A. G. Kulikovskii and J. S. Zayko}, title = {On {Waves} on the {Surface} of an {Unstable} {Layer} of a {Viscous} {Fluid} {Flowing} {Down} a {Curved} {Surface}}, journal = {Informatics and Automation}, pages = {146--156}, publisher = {mathdoc}, volume = {322}, year = {2023}, language = {ru}, url = {http://geodesic.mathdoc.fr/item/TRSPY_2023_322_a11/} }
TY - JOUR AU - A. G. Kulikovskii AU - J. S. Zayko TI - On Waves on the Surface of an Unstable Layer of a Viscous Fluid Flowing Down a Curved Surface JO - Informatics and Automation PY - 2023 SP - 146 EP - 156 VL - 322 PB - mathdoc UR - http://geodesic.mathdoc.fr/item/TRSPY_2023_322_a11/ LA - ru ID - TRSPY_2023_322_a11 ER -
%0 Journal Article %A A. G. Kulikovskii %A J. S. Zayko %T On Waves on the Surface of an Unstable Layer of a Viscous Fluid Flowing Down a Curved Surface %J Informatics and Automation %D 2023 %P 146-156 %V 322 %I mathdoc %U http://geodesic.mathdoc.fr/item/TRSPY_2023_322_a11/ %G ru %F TRSPY_2023_322_a11
A. G. Kulikovskii; J. S. Zayko. On Waves on the Surface of an Unstable Layer of a Viscous Fluid Flowing Down a Curved Surface. Informatics and Automation, Modern Methods of Mechanics, Tome 322 (2023), pp. 146-156. http://geodesic.mathdoc.fr/item/TRSPY_2023_322_a11/
[1] Akan A.O., Open channel hydraulics, Elsevier, Oxford, 2006
[2] S. V. Alekseenko, V. E. Nakoriakov, and B. G. Pokusaev, Wave Flow of Liquid Films, Begell House, Redding, CT, 1994
[3] Chang H.-C., Demekhin E.A., Complex wave dynamics on thin films, Elsevier, Amsterdam, 2002 | MR
[4] Chow V.T., Open-channel hydraulics, McGraw-Hill, New York, 1959
[5] Craster R.V., Matar O.K., “Dynamics and stability of thin liquid films”, Rev. Mod. Phys., 81:3 (2009), 1131–1198 | DOI
[6] Di Cristo C., Vacca A., “On the convective nature of roll waves instability”, J. Appl. Math., 2005:3 (2005), 259–271 | DOI | MR | Zbl
[7] Heading J., An introduction to phase-integral methods, J. Wiley and Sons, New York, 1962 | MR | Zbl
[8] Huerre P., Monkewitz P.A., “Local and global instabilities in spatially developing flows”, Annu. Rev. Fluid Mech., 22 (1990), 473–537 | DOI | MR | Zbl
[9] Kalliadasis S., Ruyer-Quil C., Scheid B., Velarde M.G., Falling liquid films, Appl. Math. Sci., 176, Springer, London, 2012 | DOI | MR | Zbl
[10] Yu. A. Kravtsov and Yu. I. Orlov, Geometrical Optics of Inhomogeneous Media, Springer, Berlin, 1990 | MR | MR
[11] A. G. Kulikovskii, “Evolution of perturbations on a steady weakly inhomogeneous background. Complex Hamiltonian equations”, J. Appl. Math. Mech., 81:1 (2017), 1–10 | DOI | MR | Zbl
[12] Kulikovskii A., Zayko J., “Asymptotic behavior of localized disturbance in a viscous fluid flow down an incline”, Phys. Fluids, 34:3 (2022), 034119 | DOI
[13] E. M. Lifshitz and L. P. Pitaevskii, Physical Kinetics, L. D. Landau and E. M. Lifshitz, Course of Theoretical Physics, 10, Pergamon, Oxford, 1981 | MR | MR
[14] Maslov V.P., Teoriya vozmuschenii i asimptoticheskie metody, Izd-vo MGU, M., 1965
[15] V. P. Maslov, Operator Methods, Mir, Moscow, 1982 | MR | MR | Zbl
[16] A. A. Rukhadze and V. P. Silin, “Method of geometrical optics in the electrodynamics of an inhomogeneous plasma”, Phys. Usp., 7:2 (1964), 209–229 | DOI | DOI | MR | Zbl
[17] Thual O., Plumerault L.-R., Astruc D., “Linear stability of the 1D Saint-Venant equations and drag parameterizations”, J. Hydraul. Res., 48:3 (2010), 348–353 | DOI
[18] Trowbridge J.H., “Instability of concentrated free surface flows”, J. Geophys. Res., 92:C9 (1987), 9523–9530 | DOI
[19] V. V. Vedernikov, “Conditions at the front of a release wave that breaks the steady motion of a real fluid”, Dokl. Akad. Nauk SSSR, 48:4 (1945), 256–259
[20] Zanuttigh B., Lamberti A., “Instability and surge development in debris flows”, Rev. Geophys., 45:3 (2007), RG3006 | DOI