On the Quasilinearizability of Hyperbolic Monge--Amp\`ere Systems
Informatics and Automation, Optimal Control and Dynamical Systems, Tome 321 (2023), pp. 286-291.

Voir la notice de l'article provenant de la source Math-Net.Ru

The paper is devoted to establishing necessary and sufficient conditions for the local quasilinearizability of nondegenerate hyperbolic Monge–Ampère systems.
Keywords: Monge–Ampère systems, quasilinear systems, hyperbolic systems.
@article{TRSPY_2023_321_a17,
     author = {D. V. Tunitsky},
     title = {On the {Quasilinearizability} of {Hyperbolic} {Monge--Amp\`ere} {Systems}},
     journal = {Informatics and Automation},
     pages = {286--291},
     publisher = {mathdoc},
     volume = {321},
     year = {2023},
     language = {ru},
     url = {http://geodesic.mathdoc.fr/item/TRSPY_2023_321_a17/}
}
TY  - JOUR
AU  - D. V. Tunitsky
TI  - On the Quasilinearizability of Hyperbolic Monge--Amp\`ere Systems
JO  - Informatics and Automation
PY  - 2023
SP  - 286
EP  - 291
VL  - 321
PB  - mathdoc
UR  - http://geodesic.mathdoc.fr/item/TRSPY_2023_321_a17/
LA  - ru
ID  - TRSPY_2023_321_a17
ER  - 
%0 Journal Article
%A D. V. Tunitsky
%T On the Quasilinearizability of Hyperbolic Monge--Amp\`ere Systems
%J Informatics and Automation
%D 2023
%P 286-291
%V 321
%I mathdoc
%U http://geodesic.mathdoc.fr/item/TRSPY_2023_321_a17/
%G ru
%F TRSPY_2023_321_a17
D. V. Tunitsky. On the Quasilinearizability of Hyperbolic Monge--Amp\`ere Systems. Informatics and Automation, Optimal Control and Dynamical Systems, Tome 321 (2023), pp. 286-291. http://geodesic.mathdoc.fr/item/TRSPY_2023_321_a17/

[1] Bilchev S.I., “Sistemy iz dvukh differentsialnykh uravnenii s chastnymi proizvodnymi pervogo poryadka (lokalnaya teoriya)”, Izv. vuzov. Matematika, 1970, no. 3, 14–21

[2] É Cartan, Les systèmes différentiels exterieurs et leurs applications geométriques, Actual. Sci. Ind., 994, Hermann, Paris, 1945 | MR

[3] Kushner A., Lychagin V., Rubtsov V., Contact geometry and nonlinear differential equations, Encycl. Math. Appl., 101, Cambridge Univ. Press, Cambridge, 2007 | MR | Zbl

[4] V. V. Lychagin, “Differential equations on two-dimensional manifolds”, Russ. Math., 36:5 (1992), 38–51 | MR | Zbl

[5] B. L. Rozhdestvenskii and N. N. Yanenko, Systems of Quasilinear Equations and Their Applications to Gas Dynamics, Transl. Math. Monogr., 55, Am. Math. Soc., Providence, RI, 1983 | MR | MR | Zbl

[6] D. V. Tunitsky, “On some categories of Monge–Ampère systems of equations”, Sb. Math., 200:11 (2009), 1681–1714 | DOI | DOI | MR | Zbl

[7] D. V. Tunitsky, “On the global solubility of the Cauchy problem for hyperbolic Monge–Ampère systems”, Izv. Math., 82:5 (2018), 1019–1075 | DOI | DOI | MR | Zbl

[8] Vasilev A.M., Teoriya differentsialno-geometricheskikh struktur, Izd-vo MGU, M., 1987

[9] F. W. Warner, Foundations of Differentiable Manifolds and Lie Groups, Grad. Texts Math., 94, Springer, New York, 1983 | DOI | MR | MR | Zbl