Voir la notice de l'article provenant de la source Math-Net.Ru
@article{TRSPY_2023_321_a17, author = {D. V. Tunitsky}, title = {On the {Quasilinearizability} of {Hyperbolic} {Monge--Amp\`ere} {Systems}}, journal = {Informatics and Automation}, pages = {286--291}, publisher = {mathdoc}, volume = {321}, year = {2023}, language = {ru}, url = {http://geodesic.mathdoc.fr/item/TRSPY_2023_321_a17/} }
D. V. Tunitsky. On the Quasilinearizability of Hyperbolic Monge--Amp\`ere Systems. Informatics and Automation, Optimal Control and Dynamical Systems, Tome 321 (2023), pp. 286-291. http://geodesic.mathdoc.fr/item/TRSPY_2023_321_a17/
[1] Bilchev S.I., “Sistemy iz dvukh differentsialnykh uravnenii s chastnymi proizvodnymi pervogo poryadka (lokalnaya teoriya)”, Izv. vuzov. Matematika, 1970, no. 3, 14–21
[2] É Cartan, Les systèmes différentiels exterieurs et leurs applications geométriques, Actual. Sci. Ind., 994, Hermann, Paris, 1945 | MR
[3] Kushner A., Lychagin V., Rubtsov V., Contact geometry and nonlinear differential equations, Encycl. Math. Appl., 101, Cambridge Univ. Press, Cambridge, 2007 | MR | Zbl
[4] V. V. Lychagin, “Differential equations on two-dimensional manifolds”, Russ. Math., 36:5 (1992), 38–51 | MR | Zbl
[5] B. L. Rozhdestvenskii and N. N. Yanenko, Systems of Quasilinear Equations and Their Applications to Gas Dynamics, Transl. Math. Monogr., 55, Am. Math. Soc., Providence, RI, 1983 | MR | MR | Zbl
[6] D. V. Tunitsky, “On some categories of Monge–Ampère systems of equations”, Sb. Math., 200:11 (2009), 1681–1714 | DOI | DOI | MR | Zbl
[7] D. V. Tunitsky, “On the global solubility of the Cauchy problem for hyperbolic Monge–Ampère systems”, Izv. Math., 82:5 (2018), 1019–1075 | DOI | DOI | MR | Zbl
[8] Vasilev A.M., Teoriya differentsialno-geometricheskikh struktur, Izd-vo MGU, M., 1987
[9] F. W. Warner, Foundations of Differentiable Manifolds and Lie Groups, Grad. Texts Math., 94, Springer, New York, 1983 | DOI | MR | MR | Zbl