Voir la notice de l'article provenant de la source Math-Net.Ru
@article{TRSPY_2023_321_a14, author = {V. A. Myrikova}, title = {An {Isoperimetric} {Problem} on the {Lobachevsky} {Plane} with a {Left-Invariant} {Finsler} {Structure}}, journal = {Informatics and Automation}, pages = {223--236}, publisher = {mathdoc}, volume = {321}, year = {2023}, language = {ru}, url = {http://geodesic.mathdoc.fr/item/TRSPY_2023_321_a14/} }
TY - JOUR AU - V. A. Myrikova TI - An Isoperimetric Problem on the Lobachevsky Plane with a Left-Invariant Finsler Structure JO - Informatics and Automation PY - 2023 SP - 223 EP - 236 VL - 321 PB - mathdoc UR - http://geodesic.mathdoc.fr/item/TRSPY_2023_321_a14/ LA - ru ID - TRSPY_2023_321_a14 ER -
V. A. Myrikova. An Isoperimetric Problem on the Lobachevsky Plane with a Left-Invariant Finsler Structure. Informatics and Automation, Optimal Control and Dynamical Systems, Tome 321 (2023), pp. 223-236. http://geodesic.mathdoc.fr/item/TRSPY_2023_321_a14/
[1] Ardentov A.A., Lokutsievskiy L.V., Sachkov Yu.L., “Extremals for a series of sub-Finsler problems with 2-dimensional control via convex trigonometry”, ESAIM. Control Optim. Calc. Var., 27 (2021), 32 ; arXiv: 2004.10194 [math.OC] | DOI | MR | Zbl
[2] Yu. D. Burago and V. A. Zalgaller, Geometric Inequalities, Grundl. Math. Wiss., 285, Springer, Berlin, 1988 | MR | Zbl
[3] Busemann H., “The isoperimetric problem in the Minkowski plane”, Amer. J. Math., 69:4 (1947), 863–871 | DOI | MR | Zbl
[4] Evans L.C., Gariepy R.F., Measure theory and fine properties of functions, CRC Press, Boca Raton, FL, 2015 | MR | Zbl
[5] I. A. Gribanova, “On a quasihyperbolic plane”, Sib. Math. J., 40:2 (1999), 245–257 | DOI | MR | Zbl
[6] L. V. Lokutsievskiy, “Convex trigonometry with applications to sub-Finsler geometry”, Sb. Math., 210:8 (2019), 1179–1205 | DOI | DOI | MR | Zbl