High-Order Splines on Riemannian Manifolds
Informatics and Automation, Optimal Control and Dynamical Systems, Tome 321 (2023), pp. 172-193

Voir la notice de l'article provenant de la source Math-Net.Ru

This paper is an overview of the work of the authors about generalized polynomial curves and splines on Riemannian manifolds. The emphasis is put on the variational approach that gives rise to such curves, and on the Hamiltonian formulation for the cubic case.
Keywords: Riemannian polynomial splines, variational problems, generalized Jacobi fields and conjugate points, $m$-exponential, optimal control, Hamiltonian equations.
Mots-clés : Euler–Lagrange equations
@article{TRSPY_2023_321_a11,
     author = {Margarida Camarinha and F\'atima Silva Leite and Peter E. Crouch},
     title = {High-Order {Splines} on {Riemannian} {Manifolds}},
     journal = {Informatics and Automation},
     pages = {172--193},
     publisher = {mathdoc},
     volume = {321},
     year = {2023},
     language = {ru},
     url = {http://geodesic.mathdoc.fr/item/TRSPY_2023_321_a11/}
}
TY  - JOUR
AU  - Margarida Camarinha
AU  - Fátima Silva Leite
AU  - Peter E. Crouch
TI  - High-Order Splines on Riemannian Manifolds
JO  - Informatics and Automation
PY  - 2023
SP  - 172
EP  - 193
VL  - 321
PB  - mathdoc
UR  - http://geodesic.mathdoc.fr/item/TRSPY_2023_321_a11/
LA  - ru
ID  - TRSPY_2023_321_a11
ER  - 
%0 Journal Article
%A Margarida Camarinha
%A Fátima Silva Leite
%A Peter E. Crouch
%T High-Order Splines on Riemannian Manifolds
%J Informatics and Automation
%D 2023
%P 172-193
%V 321
%I mathdoc
%U http://geodesic.mathdoc.fr/item/TRSPY_2023_321_a11/
%G ru
%F TRSPY_2023_321_a11
Margarida Camarinha; Fátima Silva Leite; Peter E. Crouch. High-Order Splines on Riemannian Manifolds. Informatics and Automation, Optimal Control and Dynamical Systems, Tome 321 (2023), pp. 172-193. http://geodesic.mathdoc.fr/item/TRSPY_2023_321_a11/