Voir la notice de l'article provenant de la source Math-Net.Ru
@article{TRSPY_2023_321_a0, author = {E. R. Avakov and G. G. Magaril-Il'yaev}, title = {Controllability and {Second-Order} {Necessary} {Conditions} for {Local} {Infimum} {Trajectories} in {Optimal} {Control}}, journal = {Informatics and Automation}, pages = {7--30}, publisher = {mathdoc}, volume = {321}, year = {2023}, language = {ru}, url = {http://geodesic.mathdoc.fr/item/TRSPY_2023_321_a0/} }
TY - JOUR AU - E. R. Avakov AU - G. G. Magaril-Il'yaev TI - Controllability and Second-Order Necessary Conditions for Local Infimum Trajectories in Optimal Control JO - Informatics and Automation PY - 2023 SP - 7 EP - 30 VL - 321 PB - mathdoc UR - http://geodesic.mathdoc.fr/item/TRSPY_2023_321_a0/ LA - ru ID - TRSPY_2023_321_a0 ER -
%0 Journal Article %A E. R. Avakov %A G. G. Magaril-Il'yaev %T Controllability and Second-Order Necessary Conditions for Local Infimum Trajectories in Optimal Control %J Informatics and Automation %D 2023 %P 7-30 %V 321 %I mathdoc %U http://geodesic.mathdoc.fr/item/TRSPY_2023_321_a0/ %G ru %F TRSPY_2023_321_a0
E. R. Avakov; G. G. Magaril-Il'yaev. Controllability and Second-Order Necessary Conditions for Local Infimum Trajectories in Optimal Control. Informatics and Automation, Optimal Control and Dynamical Systems, Tome 321 (2023), pp. 7-30. http://geodesic.mathdoc.fr/item/TRSPY_2023_321_a0/
[1] E. R. Avakov and G. G. Magaril-Il'yaev, “Controllability and second-order necessary conditions for optimality”, Sb. Math., 210:1 (2019), 1–23 | DOI | DOI | MR | Zbl
[2] E. R. Avakov and G. G. Magaril-Il'yaev, “Generalized needles and second-order conditions in optimal control”, Proc. Steklov Inst. Math., 304 (2019), 8–25 | DOI | DOI | MR | Zbl
[3] E. R. Avakov and G. G. Magaril-Il'yaev, “Local infimum and a family of maximum principles in optimal control”, Sb. Math., 211:6 (2020), 750–785 | DOI | DOI | MR | Zbl
[4] Avakov E.R., Magaril-Il'yaev G.G., “Necessary second-order conditions for a local infimum in an optimal control”, SIAM J. Control Optim., 60:2 (2022), 1018–1038 | DOI | MR | Zbl
[5] R. V. Gamkrelidze, “Optimal sliding states”, Sov. Math., Dokl., 3 (1962), 559–562 | Zbl
[6] R. V. Gamkrelidze, Principles of Optimal Control Theory, Plenum Press, New York, 1978 | MR | Zbl
[7] Filippov A.F., “O nekotorykh voprosakh teorii optimalnogo regulirovaniya”, Vestn. Mosk. un-ta. Matematika, mekhanika, astronomiya, fizika, khimiya, 1959, no. 2, 25–32 | Zbl
[8] E. S. Levitin, A. A. Milyutin, and N. P. Osmolovskii, “Conditions of high order for a local minimum in problems with constraints”, Russ. Math. Surv., 33:6 (1978), 97–168 | DOI | MR | Zbl
[9] E. B. Lee and L. Marcus, Foundations of Optimal Control Theory, J. Wiley and Sons, New York, 1967 | MR | Zbl
[10] G. G. Magaril-Il'yaev and V. M. Tikhomirov, Convex Analysis: Theory and Applications, Transl. Math. Monogr., 222, Am. Math. Soc., Providence, RI, 2003 | MR | MR | Zbl