Controllability and Second-Order Necessary Conditions for Local Infimum Trajectories in Optimal Control
Informatics and Automation, Optimal Control and Dynamical Systems, Tome 321 (2023), pp. 7-30.

Voir la notice de l'article provenant de la source Math-Net.Ru

We introduce the concept of local controllability of a dynamical system and present sufficient conditions for such controllability. As an immediate consequence, we prove necessary second-order conditions for a local infimum trajectory in an optimal control problem. These conditions strengthen the well-known second-order optimality conditions and extend them to more general classes of problems.
@article{TRSPY_2023_321_a0,
     author = {E. R. Avakov and G. G. Magaril-Il'yaev},
     title = {Controllability and {Second-Order} {Necessary} {Conditions} for {Local} {Infimum} {Trajectories} in {Optimal} {Control}},
     journal = {Informatics and Automation},
     pages = {7--30},
     publisher = {mathdoc},
     volume = {321},
     year = {2023},
     language = {ru},
     url = {http://geodesic.mathdoc.fr/item/TRSPY_2023_321_a0/}
}
TY  - JOUR
AU  - E. R. Avakov
AU  - G. G. Magaril-Il'yaev
TI  - Controllability and Second-Order Necessary Conditions for Local Infimum Trajectories in Optimal Control
JO  - Informatics and Automation
PY  - 2023
SP  - 7
EP  - 30
VL  - 321
PB  - mathdoc
UR  - http://geodesic.mathdoc.fr/item/TRSPY_2023_321_a0/
LA  - ru
ID  - TRSPY_2023_321_a0
ER  - 
%0 Journal Article
%A E. R. Avakov
%A G. G. Magaril-Il'yaev
%T Controllability and Second-Order Necessary Conditions for Local Infimum Trajectories in Optimal Control
%J Informatics and Automation
%D 2023
%P 7-30
%V 321
%I mathdoc
%U http://geodesic.mathdoc.fr/item/TRSPY_2023_321_a0/
%G ru
%F TRSPY_2023_321_a0
E. R. Avakov; G. G. Magaril-Il'yaev. Controllability and Second-Order Necessary Conditions for Local Infimum Trajectories in Optimal Control. Informatics and Automation, Optimal Control and Dynamical Systems, Tome 321 (2023), pp. 7-30. http://geodesic.mathdoc.fr/item/TRSPY_2023_321_a0/

[1] E. R. Avakov and G. G. Magaril-Il'yaev, “Controllability and second-order necessary conditions for optimality”, Sb. Math., 210:1 (2019), 1–23 | DOI | DOI | MR | Zbl

[2] E. R. Avakov and G. G. Magaril-Il'yaev, “Generalized needles and second-order conditions in optimal control”, Proc. Steklov Inst. Math., 304 (2019), 8–25 | DOI | DOI | MR | Zbl

[3] E. R. Avakov and G. G. Magaril-Il'yaev, “Local infimum and a family of maximum principles in optimal control”, Sb. Math., 211:6 (2020), 750–785 | DOI | DOI | MR | Zbl

[4] Avakov E.R., Magaril-Il'yaev G.G., “Necessary second-order conditions for a local infimum in an optimal control”, SIAM J. Control Optim., 60:2 (2022), 1018–1038 | DOI | MR | Zbl

[5] R. V. Gamkrelidze, “Optimal sliding states”, Sov. Math., Dokl., 3 (1962), 559–562 | Zbl

[6] R. V. Gamkrelidze, Principles of Optimal Control Theory, Plenum Press, New York, 1978 | MR | Zbl

[7] Filippov A.F., “O nekotorykh voprosakh teorii optimalnogo regulirovaniya”, Vestn. Mosk. un-ta. Matematika, mekhanika, astronomiya, fizika, khimiya, 1959, no. 2, 25–32 | Zbl

[8] E. S. Levitin, A. A. Milyutin, and N. P. Osmolovskii, “Conditions of high order for a local minimum in problems with constraints”, Russ. Math. Surv., 33:6 (1978), 97–168 | DOI | MR | Zbl

[9] E. B. Lee and L. Marcus, Foundations of Optimal Control Theory, J. Wiley and Sons, New York, 1967 | MR | Zbl

[10] G. G. Magaril-Il'yaev and V. M. Tikhomirov, Convex Analysis: Theory and Applications, Transl. Math. Monogr., 222, Am. Math. Soc., Providence, RI, 2003 | MR | MR | Zbl