Piecewise General Monotone Functions and the Hardy--Littlewood Theorem
Informatics and Automation, Approximation Theory, Functional Analysis, and Applications, Tome 319 (2022), pp. 120-133.

Voir la notice de l'article provenant de la source Math-Net.Ru

We obtain necessary and sufficient conditions for an integrable piecewise general monotone function to belong to an $L^p$ space with a weight of Muckenhoupt class $\mathbb A_p$ in terms of the Fourier coefficients. We also find a sufficient condition for the Hardy transform of an arbitrary integrable function to belong to the same space.
@article{TRSPY_2022_319_a9,
     author = {M. I. Dyachenko and S. Yu. Tikhonov},
     title = {Piecewise {General} {Monotone} {Functions} and the {Hardy--Littlewood} {Theorem}},
     journal = {Informatics and Automation},
     pages = {120--133},
     publisher = {mathdoc},
     volume = {319},
     year = {2022},
     language = {ru},
     url = {http://geodesic.mathdoc.fr/item/TRSPY_2022_319_a9/}
}
TY  - JOUR
AU  - M. I. Dyachenko
AU  - S. Yu. Tikhonov
TI  - Piecewise General Monotone Functions and the Hardy--Littlewood Theorem
JO  - Informatics and Automation
PY  - 2022
SP  - 120
EP  - 133
VL  - 319
PB  - mathdoc
UR  - http://geodesic.mathdoc.fr/item/TRSPY_2022_319_a9/
LA  - ru
ID  - TRSPY_2022_319_a9
ER  - 
%0 Journal Article
%A M. I. Dyachenko
%A S. Yu. Tikhonov
%T Piecewise General Monotone Functions and the Hardy--Littlewood Theorem
%J Informatics and Automation
%D 2022
%P 120-133
%V 319
%I mathdoc
%U http://geodesic.mathdoc.fr/item/TRSPY_2022_319_a9/
%G ru
%F TRSPY_2022_319_a9
M. I. Dyachenko; S. Yu. Tikhonov. Piecewise General Monotone Functions and the Hardy--Littlewood Theorem. Informatics and Automation, Approximation Theory, Functional Analysis, and Applications, Tome 319 (2022), pp. 120-133. http://geodesic.mathdoc.fr/item/TRSPY_2022_319_a9/

[1] Ariño M., Muckenhoupt B., “Maximal functions on classical Lorentz spaces and Hardy's inequality with weights for nonincreasing functions”, Trans. Amer. Math. Soc., 320:2 (1990), 727–735 | MR

[2] Askey R., Boas R.P., Jr., “Fourier coefficients of positive functions”, Math. Z., 100 (1967), 373–379 | DOI | MR

[3] N. K. Bary, A Treatise on Trigonometric Series, v. I, II, Pergamon Press, Oxford, 1964 | MR

[4] Boas R.P., \textup {Jr.}, Integrability theorems for trigonometric transforms, Springer, Berlin, 1967 | MR

[5] Booton B., “General monotone functions and their Fourier coefficients”, J. Math. Anal. Appl., 426:2 (2015), 805–823 | DOI | MR

[6] Booton B., Sagher Y., “Norm inequalities for certain classes of functions and their Fourier transforms”, J. Math. Anal. Appl., 335:2 (2007), 1416–1433 | DOI | MR

[7] Debernardi A., “The Boas problem on Hankel transforms”, J. Fourier Anal. Appl, 25:6 (2019), 3310–3341 | DOI | MR

[8] M. I. D'yachenko, “Piecewise monotonic functions of several variables and a theorem of Hardy and Littlewood”, Math. USSR, Izv., 39:3 (1992), 1113–1128 | DOI | MR

[9] Dyachenko M., Mukanov A., Tikhonov S., “Hardy–Littlewood theorems for trigonometric series with general monotone coefficients”, Stud. math., 250:3 (2020), 217–234 | DOI | MR

[10] Dyachenko M., Nursultanov E., Tikhonov S., “Hardy–Littlewood and Pitt's inequalities for Hausdorff operators”, Bull. sci. math., 147 (2018), 40–57 | DOI | MR

[11] Dyachenko M., Nursultanov E., Tikhonov S., “Hardy-type theorems on Fourier transforms revised”, J. Math. Anal. Appl., 467:1 (2018), 171–184 | DOI | MR

[12] Dyachenko M., Tikhonov S., “Integrability and continuity of functions represented by trigonometric series: Coefficients criteria”, Stud. math., 193:3 (2009), 285–306 | DOI | MR

[13] Dyachenko M.I., Tikhonov S.Yu., “Smoothness and asymptotic properties of functions with general monotone Fourier coefficients”, J. Fourier Anal. Appl., 24:4 (2018), 1072–1097 | DOI | MR

[14] Fefferman C., Muckenhoupt B., “Two nonequivalent conditions for weight functions”, Proc. Amer. Math. Soc., 45 (1974), 99–104 | DOI | MR

[15] Grigoriev S.M., Sagher Y., Savage T.R., “General monotonicity and interpolation of operators”, J. Math. Anal. Appl., 435:2 (2016), 1296–1320 | DOI | MR

[16] Kopezhanova A., Nursultanov E., Persson L.-E., “A new generalization of Boas theorem for some Lorentz spaces $\Lambda _q(\omega )$”, J. Math. Inequal., 12:3 (2018), 619–633 | DOI | MR

[17] Kufner A., Persson L.-E., Weighted inequalities of Hardy type, World Scientific, Singapore, 2003 | MR

[18] Liflyand E., Tikhonov S., “A concept of general monotonicity and applications”, Math. Nachr., 284:8–9 (2011), 1083–1098 | DOI | MR

[19] Muckenhoupt B., “Hardy's inequality with weights”, Stud. math., 44 (1972), 31–38 | DOI | MR

[20] Muckenhoupt B., “Weighted norm inequalities for the Hardy maximal function”, Trans. Amer. Math. Soc., 165 (1972), 207–226 | DOI | MR

[21] E. D. Nursultanov, “On the coefficients of multiple Fourier series in $L_p$-spaces”, Izv. Math., 64:1 (2000), 93–120 | DOI | MR

[22] Persson L.-E., “Relations between summability of functions and their Fourier series”, Acta math. Acad. sci. Hungar., 27:3–4 (1976), 267–280 | DOI | MR

[23] Sagher Y., “An application of interpolation theory to Fourier series”, Stud. math., 41 (1972), 169–181 | DOI | MR

[24] Sagher Y., “Some remarks on interpolation of operators and Fourier coefficients”, Stud. math., 44 (1972), 239–252 | DOI | MR

[25] Tikhonov S., “Trigonometric series with general monotone coefficients”, J. Math. Anal. Appl., 326:1 (2007), 721–735 | DOI | MR

[26] Wik I., “On Muckenhoupt's classes of weight functions”, Stud. math., 94:3 (1989), 245–255 ; Zigmund A., Trigonometricheskie ryady, v. 2, Mir, M., 1965 | DOI | MR

[27] A. Zygmund, Trigonometric Series, v. 2, 3rd ed., Cambridge Univ. Press, Cambridge, 2002 | MR