On the Sum of a Trigonometric Sine Series with Monotone Coefficients
Informatics and Automation, Approximation Theory, Functional Analysis, and Applications, Tome 319 (2022), pp. 29-50

Voir la notice de l'article provenant de la source Math-Net.Ru

We prove that for each positive integer $n$ the conjugate Dirichlet kernel $\widetilde {D}_n(x)=\sum _{k=1}^{n}\sin (kx)$ is semiadditive on the interval $[0,2\pi ]$, that is, $\widetilde {D}_n(x_1) + \widetilde {D}_n(x_2) \ge \widetilde {D}_n(x_1 + x_2)$ for any nonnegative real numbers $x_1$ and $x_2$ such that $x_1 + x_2\le 2\pi $; moreover, for positive $x_1$ and $x_2$ with $x_1 + x_2 2\pi $, the equality is attained if and only if the condition $\widetilde {D}_n(x_1) = \widetilde {D}_n(x_2) = \widetilde {D}_n(x_1 + x_2) = 0$ is satisfied. We use this property of the conjugate Dirichlet kernel to study the sum of a sine series with monotone coefficients. We also examine the properties of some nonnegative trigonometric polynomials.
Keywords: conjugate Dirichlet kernel, semiadditive functions, nonnegative trigonometric polynomials.
@article{TRSPY_2022_319_a2,
     author = {A. S. Belov},
     title = {On the {Sum} of a {Trigonometric} {Sine} {Series} with {Monotone} {Coefficients}},
     journal = {Informatics and Automation},
     pages = {29--50},
     publisher = {mathdoc},
     volume = {319},
     year = {2022},
     language = {ru},
     url = {http://geodesic.mathdoc.fr/item/TRSPY_2022_319_a2/}
}
TY  - JOUR
AU  - A. S. Belov
TI  - On the Sum of a Trigonometric Sine Series with Monotone Coefficients
JO  - Informatics and Automation
PY  - 2022
SP  - 29
EP  - 50
VL  - 319
PB  - mathdoc
UR  - http://geodesic.mathdoc.fr/item/TRSPY_2022_319_a2/
LA  - ru
ID  - TRSPY_2022_319_a2
ER  - 
%0 Journal Article
%A A. S. Belov
%T On the Sum of a Trigonometric Sine Series with Monotone Coefficients
%J Informatics and Automation
%D 2022
%P 29-50
%V 319
%I mathdoc
%U http://geodesic.mathdoc.fr/item/TRSPY_2022_319_a2/
%G ru
%F TRSPY_2022_319_a2
A. S. Belov. On the Sum of a Trigonometric Sine Series with Monotone Coefficients. Informatics and Automation, Approximation Theory, Functional Analysis, and Applications, Tome 319 (2022), pp. 29-50. http://geodesic.mathdoc.fr/item/TRSPY_2022_319_a2/