Essay on Kashin's Remarkable 1977 Decomposition Theorem
Informatics and Automation, Approximation Theory, Functional Analysis, and Applications, Tome 319 (2022), pp. 213-222.

Voir la notice de l'article provenant de la source Math-Net.Ru

We recall the classical result by B. S. Kashin from 1977 and discuss its impact and consequences from a present time perspective.
@article{TRSPY_2022_319_a13,
     author = {V. D. Milman},
     title = {Essay on {Kashin's} {Remarkable} 1977 {Decomposition} {Theorem}},
     journal = {Informatics and Automation},
     pages = {213--222},
     publisher = {mathdoc},
     volume = {319},
     year = {2022},
     language = {ru},
     url = {http://geodesic.mathdoc.fr/item/TRSPY_2022_319_a13/}
}
TY  - JOUR
AU  - V. D. Milman
TI  - Essay on Kashin's Remarkable 1977 Decomposition Theorem
JO  - Informatics and Automation
PY  - 2022
SP  - 213
EP  - 222
VL  - 319
PB  - mathdoc
UR  - http://geodesic.mathdoc.fr/item/TRSPY_2022_319_a13/
LA  - ru
ID  - TRSPY_2022_319_a13
ER  - 
%0 Journal Article
%A V. D. Milman
%T Essay on Kashin's Remarkable 1977 Decomposition Theorem
%J Informatics and Automation
%D 2022
%P 213-222
%V 319
%I mathdoc
%U http://geodesic.mathdoc.fr/item/TRSPY_2022_319_a13/
%G ru
%F TRSPY_2022_319_a13
V. D. Milman. Essay on Kashin's Remarkable 1977 Decomposition Theorem. Informatics and Automation, Approximation Theory, Functional Analysis, and Applications, Tome 319 (2022), pp. 213-222. http://geodesic.mathdoc.fr/item/TRSPY_2022_319_a13/

[1] Alon N., Klartag B., “Optimal compression of approximate inner products and dimension reduction”, FOCS 2017: Proc. 58th Annu. IEEE Symp. on Foundations of Computer Science, Los Alamitos, CA, IEEE Comput. Soc., 2017, 639–650 | DOI | MR

[2] Artstein-Avidan S., Giannopoulos A., Milman V.D., Asymptotic geometric analysis, Part I, Math. Surv. Monogr., 202, Amer. Math. Soc., Providence, RI, 2015 | DOI | MR

[3] Bourgain J., Lindenstrauss J., Milman V., “Minkowski sums and symmetrizations”, Geometric aspects of functional analysis: Isr. semin. 1986–87, Lect. Notes Math., 1317, Springer, Berlin, 1988, 44–66 | DOI | MR

[4] Bourgain J., Milman V.D., “Sections euclidiennes et volume des corps symétriques convexes dans $\mathbf R^n$”, C. r. Acad. sci. Paris. Sér. I. Math., 300:13 (1985), 435–438 | MR

[5] Figiel T., Lindenstrauss J., Milman V.D., “The dimension of almost spherical sections of convex bodies”, Acta math., 139 (1977), 53–94 | DOI | MR

[6] A. Yu. Garnaev and E. D. Gluskin, “On widths of the Euclidean ball”, Sov. Math., Dokl., 30 (1984), 200–204 | MR

[7] Gilbert J.E., Leih T.J., “Factorization, tensor products, and bilinear forms in Banach space theory”, Notes in Banach spaces, Univ. Texas Press, Austin, TX, 1980, 182–305 | MR

[8] Gordon Y., “On Milman's inequality and random subspaces which escape through a mesh in $\mathbb {R}^n$”, Geometric aspects of functional analysis: Isr. semin. 1986–87, Lect. Notes Math., 1317, Springer, Berlin, 1988, 84–106 | DOI | MR

[9] Johnson W.B., Lindenstrauss J., “Extensions of Lipschitz mappings into a Hilbert space”, Conference in modern analysis and probability (New Haven, CT, 1982), Contemp. Math., 26, Amer. Math. Soc., Providence, RI, 1984, 189–206 | DOI | MR

[10] B. S. Kašin, “Diameters of some finite-dimensional sets and classes of smooth functions”, Math. USSR, Izv., 11:2 (1977), 317–333 | DOI

[11] Kashin B.S., “Ob odnom izometricheskom operatore v $L^2(0,1)$”, Dokl. Bolg. AN, 38:12 (1985), 1613–1615

[12] B. S. Kashin, “On a special orthogonal decomposition of the space $L^2(0,1)$”, Math. Notes, 95:3–4 (2014), 570–572 | DOI | MR

[13] Kashin B.S., Szarek S.J., “The Knaster problem and the geometry of high-dimensional cubes”, C. r. Math. Acad. sci. Paris, 336:11 (2003), 931–936 | DOI | MR

[14] Krivine J.-L., “Sur un théorème de Kashin”, Séminaire d'analyse fonctionnelle 1983/1984, Paris VII et VI, Publ. math. Univ. Paris VII, 20, Univ. Paris VII, Paris, 1984, 21–26 | MR

[15] Larsen K.G., Nelson J., “Optimality of the Johnson–Lindenstrauss lemma”, FOCS 2017: Proc. 58th Annu. IEEE Symp. on Foundations of Computer Science, Los Alamitos, CA, IEEE Comput. Soc., 2017, 633–638 | DOI | MR

[16] Makovoz Y., “A simple proof of an inequality in the theory of $n$-widths”, Constructive theory of functions: Proc. Int. Conf. (Varna, 1987), Publ. House Bulg. Acad. Sci., Sofia, 1988, 305–308 | MR

[17] V. D. Mil'man, “New proof of the theorem of A. Dvoretzky on intersections of convex bodies”, Funct. Anal. Appl., 5:4 (1971), 288–295 | DOI

[18] Milman V.D., “Geometrical inequalities and mixed volumes in the local theory of Banach spaces”, Colloque en l'honneur de Laurent Schwartz: Ecole polytechnique, 1983, v. 1, Astérisque, 131, Soc. math. France, Paris, 1985, 373–400 | MR

[19] Milman V.D., “Random subspaces of proportional dimension of finite dimensional normed spaces: Approach through the isoperimetric inequality”, Banach spaces: Proc. Conf. (Columbia, MO, 1984), Lect. Notes Math., 1166, Springer, Berlin, 1985, 106–115 | DOI | MR

[20] Milman V., “A note on a low $M^*$-estimate”, Geometry of Banach spaces: Proc. Conf. (Strobl, 1989), LMS Lect. Note Ser., 158, Cambridge Univ. Press, Cambridge, 1990, 219–229 | MR

[21] Milman V., “Some applications of duality relations”, Geometric aspects of functional analysis: Isr. semin. 1989–90, Lect. Notes Math., 1469, Springer, Berlin, 1991, 13–40 | DOI | MR

[22] Milman V.D., Pisier G., “Banach spaces with a weak cotype 2 property”, Isr. J. Math., 54:2 (1986), 139–158 | DOI | MR

[23] Pajor A., Tomczak-Jaegermann N., “Subspaces of small codimension of finite-dimensional Banach spaces”, Proc. Amer. Math. Soc., 97:4 (1986), 637–642 | DOI | MR