On Titchmarsh's Phenomenon in the Theory of the Riemann Zeta Function
Informatics and Automation, Approximation Theory, Functional Analysis, and Applications, Tome 319 (2022), pp. 182-201

Voir la notice de l'article provenant de la source Math-Net.Ru

We prove that the maximum modulus of the Riemann zeta function $\zeta (s)$ increases unboundedly when $s = 0.5+it$ varies on very short intervals of the critical line, and obtain an explicit lower bound for the growth rate of this maximum. This main result of the paper improves the second author's result of 2014 stating that this maximum becomes greater than any arbitrarily large fixed constant as $t$ increases. We also apply our method of proof to problems of large values of the argument of the zeta function and of irregularities in the distribution of the ordinates of zeros of $\zeta (s)$ on very short intervals of the critical line. We prove all these assertions assuming the Riemann hypothesis. The main ingredient of the method is an “effective” lemma on joint approximations of logarithms of prime numbers.
Keywords: Riemann zeta function, critical line, joint approximations, logarithms of primes
Mots-clés : Vinogradov cup.
@article{TRSPY_2022_319_a11,
     author = {S. V. Konyagin and M. A. Korolev},
     title = {On {Titchmarsh's} {Phenomenon} in the {Theory} of the {Riemann} {Zeta} {Function}},
     journal = {Informatics and Automation},
     pages = {182--201},
     publisher = {mathdoc},
     volume = {319},
     year = {2022},
     language = {ru},
     url = {http://geodesic.mathdoc.fr/item/TRSPY_2022_319_a11/}
}
TY  - JOUR
AU  - S. V. Konyagin
AU  - M. A. Korolev
TI  - On Titchmarsh's Phenomenon in the Theory of the Riemann Zeta Function
JO  - Informatics and Automation
PY  - 2022
SP  - 182
EP  - 201
VL  - 319
PB  - mathdoc
UR  - http://geodesic.mathdoc.fr/item/TRSPY_2022_319_a11/
LA  - ru
ID  - TRSPY_2022_319_a11
ER  - 
%0 Journal Article
%A S. V. Konyagin
%A M. A. Korolev
%T On Titchmarsh's Phenomenon in the Theory of the Riemann Zeta Function
%J Informatics and Automation
%D 2022
%P 182-201
%V 319
%I mathdoc
%U http://geodesic.mathdoc.fr/item/TRSPY_2022_319_a11/
%G ru
%F TRSPY_2022_319_a11
S. V. Konyagin; M. A. Korolev. On Titchmarsh's Phenomenon in the Theory of the Riemann Zeta Function. Informatics and Automation, Approximation Theory, Functional Analysis, and Applications, Tome 319 (2022), pp. 182-201. http://geodesic.mathdoc.fr/item/TRSPY_2022_319_a11/