On Quasibases and Bases of Symmetric Spaces Consisting of Nonnegative Functions
Informatics and Automation, Approximation Theory, Functional Analysis, and Applications, Tome 319 (2022), pp. 20-28
Voir la notice de l'article provenant de la source Math-Net.Ru
Based on the study of the geometric properties of unconditional quasibasic sequences, we show that in an arbitrary symmetric space there exists no unconditional quasibasis consisting of nonnegative functions. Moreover, we demonstrate that in an arbitrary Banach function lattice $X$ of type $p>1$ one can introduce an equivalent norm such that there exists no monotone (with respect to the new norm) basis in $X$ that consists of nonnegative functions.
Keywords:
basis, quasibasis, basic sequence, symmetric space, Rademacher system, type of a Banach space.
@article{TRSPY_2022_319_a1,
author = {S. V. Astashkin and P. A. Terekhin},
title = {On {Quasibases} and {Bases} of {Symmetric} {Spaces} {Consisting} of {Nonnegative} {Functions}},
journal = {Informatics and Automation},
pages = {20--28},
publisher = {mathdoc},
volume = {319},
year = {2022},
language = {ru},
url = {http://geodesic.mathdoc.fr/item/TRSPY_2022_319_a1/}
}
TY - JOUR AU - S. V. Astashkin AU - P. A. Terekhin TI - On Quasibases and Bases of Symmetric Spaces Consisting of Nonnegative Functions JO - Informatics and Automation PY - 2022 SP - 20 EP - 28 VL - 319 PB - mathdoc UR - http://geodesic.mathdoc.fr/item/TRSPY_2022_319_a1/ LA - ru ID - TRSPY_2022_319_a1 ER -
S. V. Astashkin; P. A. Terekhin. On Quasibases and Bases of Symmetric Spaces Consisting of Nonnegative Functions. Informatics and Automation, Approximation Theory, Functional Analysis, and Applications, Tome 319 (2022), pp. 20-28. http://geodesic.mathdoc.fr/item/TRSPY_2022_319_a1/