On Quasibases and Bases of Symmetric Spaces Consisting of Nonnegative Functions
Informatics and Automation, Approximation Theory, Functional Analysis, and Applications, Tome 319 (2022), pp. 20-28

Voir la notice de l'article provenant de la source Math-Net.Ru

Based on the study of the geometric properties of unconditional quasibasic sequences, we show that in an arbitrary symmetric space there exists no unconditional quasibasis consisting of nonnegative functions. Moreover, we demonstrate that in an arbitrary Banach function lattice $X$ of type $p>1$ one can introduce an equivalent norm such that there exists no monotone (with respect to the new norm) basis in $X$ that consists of nonnegative functions.
Keywords: basis, quasibasis, basic sequence, symmetric space, Rademacher system, type of a Banach space.
@article{TRSPY_2022_319_a1,
     author = {S. V. Astashkin and P. A. Terekhin},
     title = {On {Quasibases} and {Bases} of {Symmetric} {Spaces} {Consisting} of {Nonnegative} {Functions}},
     journal = {Informatics and Automation},
     pages = {20--28},
     publisher = {mathdoc},
     volume = {319},
     year = {2022},
     language = {ru},
     url = {http://geodesic.mathdoc.fr/item/TRSPY_2022_319_a1/}
}
TY  - JOUR
AU  - S. V. Astashkin
AU  - P. A. Terekhin
TI  - On Quasibases and Bases of Symmetric Spaces Consisting of Nonnegative Functions
JO  - Informatics and Automation
PY  - 2022
SP  - 20
EP  - 28
VL  - 319
PB  - mathdoc
UR  - http://geodesic.mathdoc.fr/item/TRSPY_2022_319_a1/
LA  - ru
ID  - TRSPY_2022_319_a1
ER  - 
%0 Journal Article
%A S. V. Astashkin
%A P. A. Terekhin
%T On Quasibases and Bases of Symmetric Spaces Consisting of Nonnegative Functions
%J Informatics and Automation
%D 2022
%P 20-28
%V 319
%I mathdoc
%U http://geodesic.mathdoc.fr/item/TRSPY_2022_319_a1/
%G ru
%F TRSPY_2022_319_a1
S. V. Astashkin; P. A. Terekhin. On Quasibases and Bases of Symmetric Spaces Consisting of Nonnegative Functions. Informatics and Automation, Approximation Theory, Functional Analysis, and Applications, Tome 319 (2022), pp. 20-28. http://geodesic.mathdoc.fr/item/TRSPY_2022_319_a1/