Toric Varieties of Schr\"oder Type
Informatics and Automation, Toric Topology, Group Actions, Geometry, and Combinatorics. Part 1, Tome 317 (2022), pp. 179-197

Voir la notice de l'article provenant de la source Math-Net.Ru

A dissection of a polygon is obtained by drawing diagonals such that no two diagonals intersect in their interiors. In this paper, we define a toric variety of Schröder type as a smooth toric variety associated with a polygon dissection. Toric varieties of Schröder type are Fano generalized Bott manifolds, and they are isomorphic if and only if the associated Schröder trees are the same as unordered rooted trees. We describe the cohomology ring of a toric variety of Schröder type using the associated Schröder tree and discuss the cohomological rigidity problem.
Keywords: toric variety, polygon dissection, Schröder tree, generalized Bott manifold.
@article{TRSPY_2022_317_a8,
     author = {JiSun Huh and Seonjeong Park},
     title = {Toric {Varieties} of {Schr\"oder} {Type}},
     journal = {Informatics and Automation},
     pages = {179--197},
     publisher = {mathdoc},
     volume = {317},
     year = {2022},
     language = {ru},
     url = {http://geodesic.mathdoc.fr/item/TRSPY_2022_317_a8/}
}
TY  - JOUR
AU  - JiSun Huh
AU  - Seonjeong Park
TI  - Toric Varieties of Schr\"oder Type
JO  - Informatics and Automation
PY  - 2022
SP  - 179
EP  - 197
VL  - 317
PB  - mathdoc
UR  - http://geodesic.mathdoc.fr/item/TRSPY_2022_317_a8/
LA  - ru
ID  - TRSPY_2022_317_a8
ER  - 
%0 Journal Article
%A JiSun Huh
%A Seonjeong Park
%T Toric Varieties of Schr\"oder Type
%J Informatics and Automation
%D 2022
%P 179-197
%V 317
%I mathdoc
%U http://geodesic.mathdoc.fr/item/TRSPY_2022_317_a8/
%G ru
%F TRSPY_2022_317_a8
JiSun Huh; Seonjeong Park. Toric Varieties of Schr\"oder Type. Informatics and Automation, Toric Topology, Group Actions, Geometry, and Combinatorics. Part 1, Tome 317 (2022), pp. 179-197. http://geodesic.mathdoc.fr/item/TRSPY_2022_317_a8/