The Second Cohomology of Regular Semisimple Hessenberg Varieties from GKM Theory
Informatics and Automation, Toric Topology, Group Actions, Geometry, and Combinatorics. Part 1, Tome 317 (2022), pp. 5-26
Voir la notice de l'article provenant de la source Math-Net.Ru
We describe the second cohomology of a regular semisimple Hessenberg variety by generators and relations explicitly in terms of GKM theory. The cohomology of a regular semisimple Hessenberg variety becomes a module of a symmetric group $\mathfrak {S}_n$ by the dot action introduced by Tymoczko. As an application of our explicit description, we give a formula describing the isomorphism class of the second cohomology as an $\mathfrak {S}_n$-module. Our formula is not exactly the same as the known formula by Chow or Cho, Hong, and Lee, but they are equivalent. We also discuss its higher degree generalization.
Keywords:
Hessenberg variety, GKM theory, equivariant cohomology
Mots-clés : torus action, permutation module.
Mots-clés : torus action, permutation module.
@article{TRSPY_2022_317_a0,
author = {Anton A. Ayzenberg and Mikiya Masuda and Takashi Sato},
title = {The {Second} {Cohomology} of {Regular} {Semisimple} {Hessenberg} {Varieties} from {GKM} {Theory}},
journal = {Informatics and Automation},
pages = {5--26},
publisher = {mathdoc},
volume = {317},
year = {2022},
language = {ru},
url = {http://geodesic.mathdoc.fr/item/TRSPY_2022_317_a0/}
}
TY - JOUR AU - Anton A. Ayzenberg AU - Mikiya Masuda AU - Takashi Sato TI - The Second Cohomology of Regular Semisimple Hessenberg Varieties from GKM Theory JO - Informatics and Automation PY - 2022 SP - 5 EP - 26 VL - 317 PB - mathdoc UR - http://geodesic.mathdoc.fr/item/TRSPY_2022_317_a0/ LA - ru ID - TRSPY_2022_317_a0 ER -
%0 Journal Article %A Anton A. Ayzenberg %A Mikiya Masuda %A Takashi Sato %T The Second Cohomology of Regular Semisimple Hessenberg Varieties from GKM Theory %J Informatics and Automation %D 2022 %P 5-26 %V 317 %I mathdoc %U http://geodesic.mathdoc.fr/item/TRSPY_2022_317_a0/ %G ru %F TRSPY_2022_317_a0
Anton A. Ayzenberg; Mikiya Masuda; Takashi Sato. The Second Cohomology of Regular Semisimple Hessenberg Varieties from GKM Theory. Informatics and Automation, Toric Topology, Group Actions, Geometry, and Combinatorics. Part 1, Tome 317 (2022), pp. 5-26. http://geodesic.mathdoc.fr/item/TRSPY_2022_317_a0/