The Second Cohomology of Regular Semisimple Hessenberg Varieties from GKM Theory
Informatics and Automation, Toric Topology, Group Actions, Geometry, and Combinatorics. Part 1, Tome 317 (2022), pp. 5-26

Voir la notice de l'article provenant de la source Math-Net.Ru

We describe the second cohomology of a regular semisimple Hessenberg variety by generators and relations explicitly in terms of GKM theory. The cohomology of a regular semisimple Hessenberg variety becomes a module of a symmetric group $\mathfrak {S}_n$ by the dot action introduced by Tymoczko. As an application of our explicit description, we give a formula describing the isomorphism class of the second cohomology as an $\mathfrak {S}_n$-module. Our formula is not exactly the same as the known formula by Chow or Cho, Hong, and Lee, but they are equivalent. We also discuss its higher degree generalization.
Keywords: Hessenberg variety, GKM theory, equivariant cohomology
Mots-clés : torus action, permutation module.
@article{TRSPY_2022_317_a0,
     author = {Anton A. Ayzenberg and Mikiya Masuda and Takashi Sato},
     title = {The {Second} {Cohomology} of {Regular} {Semisimple} {Hessenberg} {Varieties} from {GKM} {Theory}},
     journal = {Informatics and Automation},
     pages = {5--26},
     publisher = {mathdoc},
     volume = {317},
     year = {2022},
     language = {ru},
     url = {http://geodesic.mathdoc.fr/item/TRSPY_2022_317_a0/}
}
TY  - JOUR
AU  - Anton A. Ayzenberg
AU  - Mikiya Masuda
AU  - Takashi Sato
TI  - The Second Cohomology of Regular Semisimple Hessenberg Varieties from GKM Theory
JO  - Informatics and Automation
PY  - 2022
SP  - 5
EP  - 26
VL  - 317
PB  - mathdoc
UR  - http://geodesic.mathdoc.fr/item/TRSPY_2022_317_a0/
LA  - ru
ID  - TRSPY_2022_317_a0
ER  - 
%0 Journal Article
%A Anton A. Ayzenberg
%A Mikiya Masuda
%A Takashi Sato
%T The Second Cohomology of Regular Semisimple Hessenberg Varieties from GKM Theory
%J Informatics and Automation
%D 2022
%P 5-26
%V 317
%I mathdoc
%U http://geodesic.mathdoc.fr/item/TRSPY_2022_317_a0/
%G ru
%F TRSPY_2022_317_a0
Anton A. Ayzenberg; Mikiya Masuda; Takashi Sato. The Second Cohomology of Regular Semisimple Hessenberg Varieties from GKM Theory. Informatics and Automation, Toric Topology, Group Actions, Geometry, and Combinatorics. Part 1, Tome 317 (2022), pp. 5-26. http://geodesic.mathdoc.fr/item/TRSPY_2022_317_a0/