Voir la notice de l'article provenant de la source Math-Net.Ru
@article{TRSPY_2022_316_a8, author = {Denis E. Denisov and G\"unter Hinrichs and Alexander I. Sakhanenko and Vitali I. Wachtel}, title = {Crossing an {Asymptotically} {Square-Root} {Boundary} by the {Brownian} {Motion}}, journal = {Informatics and Automation}, pages = {113--128}, publisher = {mathdoc}, volume = {316}, year = {2022}, language = {ru}, url = {http://geodesic.mathdoc.fr/item/TRSPY_2022_316_a8/} }
TY - JOUR AU - Denis E. Denisov AU - Günter Hinrichs AU - Alexander I. Sakhanenko AU - Vitali I. Wachtel TI - Crossing an Asymptotically Square-Root Boundary by the Brownian Motion JO - Informatics and Automation PY - 2022 SP - 113 EP - 128 VL - 316 PB - mathdoc UR - http://geodesic.mathdoc.fr/item/TRSPY_2022_316_a8/ LA - ru ID - TRSPY_2022_316_a8 ER -
%0 Journal Article %A Denis E. Denisov %A Günter Hinrichs %A Alexander I. Sakhanenko %A Vitali I. Wachtel %T Crossing an Asymptotically Square-Root Boundary by the Brownian Motion %J Informatics and Automation %D 2022 %P 113-128 %V 316 %I mathdoc %U http://geodesic.mathdoc.fr/item/TRSPY_2022_316_a8/ %G ru %F TRSPY_2022_316_a8
Denis E. Denisov; Günter Hinrichs; Alexander I. Sakhanenko; Vitali I. Wachtel. Crossing an Asymptotically Square-Root Boundary by the Brownian Motion. Informatics and Automation, Branching Processes and Related Topics, Tome 316 (2022), pp. 113-128. http://geodesic.mathdoc.fr/item/TRSPY_2022_316_a8/
[1] Breiman L., “First exit times from a square root boundary”, Proc. Fifth Berkeley Symposium on Mathematical Statistics and Probability, Pt. 2: Contributions to probability theory (Univ. Calif. 1965/1966), v. II, Univ. Calif. Press, Berkeley, 1967, 9–16 | MR | Zbl
[2] Denisov D., Sakhanenko A., Wachtel V., “First-passage times for random walks with nonidentically distributed increments”, Ann. Probab., 46:6 (2018), 3313–3350 | DOI | MR | Zbl
[3] D. Denisov, A. Sakhanenko, and V. Wachtel, “First-passage times over moving boundaries for asymptotically stable walks”, Theory Probab. Appl., 63:4 (2019), 613–633 | DOI | MR | Zbl
[4] Gärtner J., “Location of wave fronts for the multi-dimensional K-P-P equation and Brownian first exit densities”, Math. Nachr., 105 (1982), 317–351 | DOI | MR | Zbl
[5] A. A. Novikov, “On stopping times for a Wiener process”, Theory Probab. Appl., 16:3 (1971), 449–456 | DOI | MR | Zbl
[6] A. A. Novikov, “On estimates and the asymptotic behavior of nonexit probabilities of a Wiener process to a moving boundary”, Math. USSR, Sb., 38:4 (1981), 495–505 | DOI | MR | Zbl | Zbl
[7] A. A. Novikov, “A martingale approach in problems on first crossing time of nonlinear boundaries”, Proc. Steklov Inst. Math., 158 (1983), 141–163 | MR | Zbl | Zbl
[8] A. A. Novikov, “Martingales, Tauberian theorem, and strategies of gambling”, Theory Probab. Appl., 41:4 (1997), 716–729 | DOI | MR | MR | Zbl
[9] Oldham K.B., Myland J., Spanier J., An atlas of functions, 2nd ed., Springer, New York, 2009 | MR
[10] Sato S., “Evaluation of the first-passage time probability to a square root boundary for the Wiener process”, J. Appl. Probab., 14 (1977), 850–856 | DOI | MR | Zbl
[11] Shepp L.A., “A first passage problem for the Wiener process”, Ann. Math. Stat., 38 (1967), 1912–1914 | DOI | MR | Zbl
[12] Taksar M.I., “First hitting time of curvilinear boundary by Wiener process”, Ann. Probab., 10 (1982), 1029–1031 | DOI | MR | Zbl
[13] Uchiyama K., “Brownian first exit from and sojourn over one sided moving boundary and application”, Z. Wahrscheinlichkeitstheor. verw. Geb., 54 (1980), 75–116 | DOI | MR | Zbl