Critical Branching Processes in a Random Environment with Immigration: The Size of the Only Surviving Family
Informatics and Automation, Branching Processes and Related Topics, Tome 316 (2022), pp. 355-375.

Voir la notice de l'article provenant de la source Math-Net.Ru

We consider a critical branching process $\{Y_n,\,n\geq 0\}$ in an i.i.d. random environment in which one immigrant arrives at each generation. Let $\mathcal A_i(n)$ be the event that all individuals alive at time $n$ are offspring of the immigrant which joined the population at time $i$. We study the conditional distribution of $Y_n$ given $\mathcal A_i(n)$ when $n$ is large and $i$ follows different asymptotics which may be related to $n$ ($i$ fixed, close to $n$, or going to infinity but far from $n$).
Keywords: branching process, random environment, conditioned random walk.
Mots-clés : immigration
@article{TRSPY_2022_316_a22,
     author = {V. A. Vatutin and C. Smadi},
     title = {Critical {Branching} {Processes} in a {Random} {Environment} with {Immigration:} {The} {Size} of the {Only} {Surviving} {Family}},
     journal = {Informatics and Automation},
     pages = {355--375},
     publisher = {mathdoc},
     volume = {316},
     year = {2022},
     language = {ru},
     url = {http://geodesic.mathdoc.fr/item/TRSPY_2022_316_a22/}
}
TY  - JOUR
AU  - V. A. Vatutin
AU  - C. Smadi
TI  - Critical Branching Processes in a Random Environment with Immigration: The Size of the Only Surviving Family
JO  - Informatics and Automation
PY  - 2022
SP  - 355
EP  - 375
VL  - 316
PB  - mathdoc
UR  - http://geodesic.mathdoc.fr/item/TRSPY_2022_316_a22/
LA  - ru
ID  - TRSPY_2022_316_a22
ER  - 
%0 Journal Article
%A V. A. Vatutin
%A C. Smadi
%T Critical Branching Processes in a Random Environment with Immigration: The Size of the Only Surviving Family
%J Informatics and Automation
%D 2022
%P 355-375
%V 316
%I mathdoc
%U http://geodesic.mathdoc.fr/item/TRSPY_2022_316_a22/
%G ru
%F TRSPY_2022_316_a22
V. A. Vatutin; C. Smadi. Critical Branching Processes in a Random Environment with Immigration: The Size of the Only Surviving Family. Informatics and Automation, Branching Processes and Related Topics, Tome 316 (2022), pp. 355-375. http://geodesic.mathdoc.fr/item/TRSPY_2022_316_a22/

[1] Afanasyev V.I., Böinghoff C., Kersting G., Vatutin V.A., “Limit theorems for weakly subcritical branching processes in random environment”, J. Theor. Probab., 25:3 (2012), 703–732 | DOI | MR | Zbl

[2] Afanasyev V.I., Böinghoff Ch., Kersting G., Vatutin V.A., “Conditional limit theorems for intermediately subcritical branching processes in random environment”, Ann. Inst. Henri Poincaré. Probab. stat., 50:2 (2014), 602–627 | MR | Zbl

[3] Afanasyev V.I., Geiger J., Kersting G., Vatutin V.A., “Criticality for branching processes in random environment”, Ann. Probab., 33:2 (2005), 645–673 | DOI | MR | Zbl

[4] Dyakonova E., Li D., Vatutin V., Zhang M., “Branching processes in a random environment with immigration stopped at zero”, J. Appl. Probab., 57:1 (2020), 237–249 | DOI | MR | Zbl

[5] W. Feller, An Introduction to Probability Theory and Its Applications, v. 2, J. Wiley Sons, New York, 2008 | MR | MR

[6] J. Geiger and G. Kersting, “The survival probability of a critical branching process in a random environment”, Theory Probab. Appl., 45:3 (2001), 517–525 | DOI | MR | Zbl

[7] Guivarc'h Y., Liu Q., “Propriétés asymptotiques des processus de branchement en environnement aléatoire”, C. r. Acad. sci. Paris. Sér. I. Math., 332:4 (2001), 339–344 | DOI | MR

[8] Kersting G., Vatutin V., Discrete time branching processes in random environment, J. Wiley Sons, Hoboken, NJ, 2017 | Zbl

[9] Li D., Vatutin V., Zhang M., “Subcritical branching processes in random environment with immigration stopped at zero”, J. Theor. Probab., 34:2 (2021), 874–896 ; arXiv: 1906.09590 [math.PR] | DOI | MR | Zbl

[10] Matzke N.J., “Model selection in historical biogeography reveals that founder-event speciation is a crucial process in island clades”, Syst. Biol., 63:6 (2014), 951–970 | DOI

[11] Smadi Ch., Vatutin V., “Critical branching processes in random environment with immigration: Survival of a single family”, Extremes, 24:3 (2021), 433–460 | DOI | MR | Zbl

[12] V. A. Vatutin and E. E. Dyakonova, “Subcritical branching processes in random environment with immigration: Survival of a single family”, Theory Probab. Appl., 65:4 (2021), 527–544 | DOI | MR | Zbl

[13] V. A. Vatutin, E. E. Dyakonova, and S. Sagitov, “Evolution of branching processes in a random environment”, Proc. Steklov Inst. Math., 282 (2013), 220–242 | DOI | MR | Zbl