Voir la notice de l'article provenant de la source Math-Net.Ru
@article{TRSPY_2022_316_a22, author = {V. A. Vatutin and C. Smadi}, title = {Critical {Branching} {Processes} in a {Random} {Environment} with {Immigration:} {The} {Size} of the {Only} {Surviving} {Family}}, journal = {Informatics and Automation}, pages = {355--375}, publisher = {mathdoc}, volume = {316}, year = {2022}, language = {ru}, url = {http://geodesic.mathdoc.fr/item/TRSPY_2022_316_a22/} }
TY - JOUR AU - V. A. Vatutin AU - C. Smadi TI - Critical Branching Processes in a Random Environment with Immigration: The Size of the Only Surviving Family JO - Informatics and Automation PY - 2022 SP - 355 EP - 375 VL - 316 PB - mathdoc UR - http://geodesic.mathdoc.fr/item/TRSPY_2022_316_a22/ LA - ru ID - TRSPY_2022_316_a22 ER -
%0 Journal Article %A V. A. Vatutin %A C. Smadi %T Critical Branching Processes in a Random Environment with Immigration: The Size of the Only Surviving Family %J Informatics and Automation %D 2022 %P 355-375 %V 316 %I mathdoc %U http://geodesic.mathdoc.fr/item/TRSPY_2022_316_a22/ %G ru %F TRSPY_2022_316_a22
V. A. Vatutin; C. Smadi. Critical Branching Processes in a Random Environment with Immigration: The Size of the Only Surviving Family. Informatics and Automation, Branching Processes and Related Topics, Tome 316 (2022), pp. 355-375. http://geodesic.mathdoc.fr/item/TRSPY_2022_316_a22/
[1] Afanasyev V.I., Böinghoff C., Kersting G., Vatutin V.A., “Limit theorems for weakly subcritical branching processes in random environment”, J. Theor. Probab., 25:3 (2012), 703–732 | DOI | MR | Zbl
[2] Afanasyev V.I., Böinghoff Ch., Kersting G., Vatutin V.A., “Conditional limit theorems for intermediately subcritical branching processes in random environment”, Ann. Inst. Henri Poincaré. Probab. stat., 50:2 (2014), 602–627 | MR | Zbl
[3] Afanasyev V.I., Geiger J., Kersting G., Vatutin V.A., “Criticality for branching processes in random environment”, Ann. Probab., 33:2 (2005), 645–673 | DOI | MR | Zbl
[4] Dyakonova E., Li D., Vatutin V., Zhang M., “Branching processes in a random environment with immigration stopped at zero”, J. Appl. Probab., 57:1 (2020), 237–249 | DOI | MR | Zbl
[5] W. Feller, An Introduction to Probability Theory and Its Applications, v. 2, J. Wiley Sons, New York, 2008 | MR | MR
[6] J. Geiger and G. Kersting, “The survival probability of a critical branching process in a random environment”, Theory Probab. Appl., 45:3 (2001), 517–525 | DOI | MR | Zbl
[7] Guivarc'h Y., Liu Q., “Propriétés asymptotiques des processus de branchement en environnement aléatoire”, C. r. Acad. sci. Paris. Sér. I. Math., 332:4 (2001), 339–344 | DOI | MR
[8] Kersting G., Vatutin V., Discrete time branching processes in random environment, J. Wiley Sons, Hoboken, NJ, 2017 | Zbl
[9] Li D., Vatutin V., Zhang M., “Subcritical branching processes in random environment with immigration stopped at zero”, J. Theor. Probab., 34:2 (2021), 874–896 ; arXiv: 1906.09590 [math.PR] | DOI | MR | Zbl
[10] Matzke N.J., “Model selection in historical biogeography reveals that founder-event speciation is a crucial process in island clades”, Syst. Biol., 63:6 (2014), 951–970 | DOI
[11] Smadi Ch., Vatutin V., “Critical branching processes in random environment with immigration: Survival of a single family”, Extremes, 24:3 (2021), 433–460 | DOI | MR | Zbl
[12] V. A. Vatutin and E. E. Dyakonova, “Subcritical branching processes in random environment with immigration: Survival of a single family”, Theory Probab. Appl., 65:4 (2021), 527–544 | DOI | MR | Zbl
[13] V. A. Vatutin, E. E. Dyakonova, and S. Sagitov, “Evolution of branching processes in a random environment”, Proc. Steklov Inst. Math., 282 (2013), 220–242 | DOI | MR | Zbl