On Series of $H$-Equivalent Tuples in Markov Chains
Informatics and Automation, Branching Processes and Related Topics, Tome 316 (2022), pp. 270-284

Voir la notice de l'article provenant de la source Math-Net.Ru

Let $\mathbf {X}=(X_0,X_1,\ldots )$ be an irreducible Markov chain with state set $\{1,\ldots ,N\}$ and $H$ be a permutation group on the set $\{1,\ldots ,N\}$. We prove limit theorems for the number of series of $H$-equivalent $s$-tuples that start before time $n$ inclusive. These results continue the series of our works within the research direction initiated in the 1970s by A. M. Zubkov and other authors.
Mots-clés : Markov chain, $H$-equivalent tuples, Poisson limit theorem.
@article{TRSPY_2022_316_a17,
     author = {V. G. Mikhailov and A. M. Shoitov and A. V. Volgin},
     title = {On {Series} of $H${-Equivalent} {Tuples} in {Markov} {Chains}},
     journal = {Informatics and Automation},
     pages = {270--284},
     publisher = {mathdoc},
     volume = {316},
     year = {2022},
     language = {ru},
     url = {http://geodesic.mathdoc.fr/item/TRSPY_2022_316_a17/}
}
TY  - JOUR
AU  - V. G. Mikhailov
AU  - A. M. Shoitov
AU  - A. V. Volgin
TI  - On Series of $H$-Equivalent Tuples in Markov Chains
JO  - Informatics and Automation
PY  - 2022
SP  - 270
EP  - 284
VL  - 316
PB  - mathdoc
UR  - http://geodesic.mathdoc.fr/item/TRSPY_2022_316_a17/
LA  - ru
ID  - TRSPY_2022_316_a17
ER  - 
%0 Journal Article
%A V. G. Mikhailov
%A A. M. Shoitov
%A A. V. Volgin
%T On Series of $H$-Equivalent Tuples in Markov Chains
%J Informatics and Automation
%D 2022
%P 270-284
%V 316
%I mathdoc
%U http://geodesic.mathdoc.fr/item/TRSPY_2022_316_a17/
%G ru
%F TRSPY_2022_316_a17
V. G. Mikhailov; A. M. Shoitov; A. V. Volgin. On Series of $H$-Equivalent Tuples in Markov Chains. Informatics and Automation, Branching Processes and Related Topics, Tome 316 (2022), pp. 270-284. http://geodesic.mathdoc.fr/item/TRSPY_2022_316_a17/