Method of Moments and Sums of Random Indicators
Informatics and Automation, Branching Processes and Related Topics, Tome 316 (2022), pp. 235-247

Voir la notice de l'article provenant de la source Math-Net.Ru

Using the method of moments, we derive two theorems on the normal approximation of the sum of $n$ random indicators in a scheme of series in which the joint distribution of indicators may change with increasing $n$. The first theorem provides conditions for the convergence of all moments to the moments of the normal distribution as $n\to \infty $, and the second theorem provides accuracy estimates for the normal approximation in the uniform metric. To demonstrate the efficiency of the results, we use the particle allocation problem and the problem on the accuracy of the normal approximation for the number of solutions to random nonlinear inclusions.
@article{TRSPY_2022_316_a15,
     author = {V. A. Kopyttsev and V. G. Mikhailov},
     title = {Method of {Moments} and {Sums} of {Random} {Indicators}},
     journal = {Informatics and Automation},
     pages = {235--247},
     publisher = {mathdoc},
     volume = {316},
     year = {2022},
     language = {ru},
     url = {http://geodesic.mathdoc.fr/item/TRSPY_2022_316_a15/}
}
TY  - JOUR
AU  - V. A. Kopyttsev
AU  - V. G. Mikhailov
TI  - Method of Moments and Sums of Random Indicators
JO  - Informatics and Automation
PY  - 2022
SP  - 235
EP  - 247
VL  - 316
PB  - mathdoc
UR  - http://geodesic.mathdoc.fr/item/TRSPY_2022_316_a15/
LA  - ru
ID  - TRSPY_2022_316_a15
ER  - 
%0 Journal Article
%A V. A. Kopyttsev
%A V. G. Mikhailov
%T Method of Moments and Sums of Random Indicators
%J Informatics and Automation
%D 2022
%P 235-247
%V 316
%I mathdoc
%U http://geodesic.mathdoc.fr/item/TRSPY_2022_316_a15/
%G ru
%F TRSPY_2022_316_a15
V. A. Kopyttsev; V. G. Mikhailov. Method of Moments and Sums of Random Indicators. Informatics and Automation, Branching Processes and Related Topics, Tome 316 (2022), pp. 235-247. http://geodesic.mathdoc.fr/item/TRSPY_2022_316_a15/