Voir la notice de l'article provenant de la source Math-Net.Ru
@article{TRSPY_2021_315_a15, author = {M. I. Ronzhina and L. A. Manita and L. V. Lokutsievskiy}, title = {Neighborhood of the {Second-Order} {Singular} {Regime} in {Problems} with {Control} in a {Disk}}, journal = {Informatics and Automation}, pages = {222--236}, publisher = {mathdoc}, volume = {315}, year = {2021}, language = {ru}, url = {http://geodesic.mathdoc.fr/item/TRSPY_2021_315_a15/} }
TY - JOUR AU - M. I. Ronzhina AU - L. A. Manita AU - L. V. Lokutsievskiy TI - Neighborhood of the Second-Order Singular Regime in Problems with Control in a Disk JO - Informatics and Automation PY - 2021 SP - 222 EP - 236 VL - 315 PB - mathdoc UR - http://geodesic.mathdoc.fr/item/TRSPY_2021_315_a15/ LA - ru ID - TRSPY_2021_315_a15 ER -
%0 Journal Article %A M. I. Ronzhina %A L. A. Manita %A L. V. Lokutsievskiy %T Neighborhood of the Second-Order Singular Regime in Problems with Control in a Disk %J Informatics and Automation %D 2021 %P 222-236 %V 315 %I mathdoc %U http://geodesic.mathdoc.fr/item/TRSPY_2021_315_a15/ %G ru %F TRSPY_2021_315_a15
M. I. Ronzhina; L. A. Manita; L. V. Lokutsievskiy. Neighborhood of the Second-Order Singular Regime in Problems with Control in a Disk. Informatics and Automation, Optimal Control and Differential Games, Tome 315 (2021), pp. 222-236. http://geodesic.mathdoc.fr/item/TRSPY_2021_315_a15/
[1] Agrachev A., Barilari D., Boscain U., A comprehensive introduction to sub-Riemannian geometry: From the Hamiltonian viewpoint, Cambridge Stud. Adv. Math., 181, Cambridge Univ. Press, Cambridge, 2019
[2] Agrachev A.A., Biolo C., “Switching in time-optimal problem: The 3D case with 2D control”, J. Dyn. Control Syst., 23:3 (2017), 577–595 | DOI | MR
[3] Agrachev A.A., Biolo C., “Switching in time-optimal problem with control in a ball”, SIAM J. Control Optim., 56:1 (2018), 183–200 | DOI | MR
[4] Agrachev A.A., Biolo C., “Optimality of broken extremals”, J. Dyn. Control Syst., 25:2 (2019), 289–307 | DOI | MR
[5] Agrachev A.A., Sachkov Yu.L., Control theory from the geometric viewpoint, Encycl. Math. Sci., 87, Springer, Berlin, 2004
[6] A. A. Ardentov, L. V. Lokutsievskiy, and Yu. L. Sachkov, “Explicit solutions for a series of optimization problems with 2-dimensional control via convex trigonometry”, Dokl. Math., 102:2 (2020), 427–432 | DOI
[7] V. F. Borisov, “Kelley condition and structure of Lagrange manifold in a neighborhood of a first-order singular extremal”, J. Math. Sci., 151:6 (2008), 3431–3472 | DOI | MR
[8] Chukanov S.V., Milyutin A.A., “Qualitative study of singularities for extremals of quadratic optimal control problem”, Russ. J. Math. Phys., 2:1 (1994), 31–48 | MR
[9] Farkas M., Periodic motions, Appl. Math. Sci., 104, Springer, New York, 1994 | DOI
[10] Goh B.S., “Optimal singular rocket and aircraft trajectories”, 2008 Chinese Control and Decision Conference, IEEE, Piscataway, NJ, 2008, 1531–1536 | DOI
[11] Hartman Ph., Ordinary differential equations, J. Wiley and Sons, New York, 1964
[12] Kupka I.A.K., “The ubiquity of Fuller's phenomenon”, Nonlinear controllability and optimal control, Pure Appl. Math., 133, M. Dekker, New York, 1990, 313–350
[13] Ledzewicz U., Schättler H., “Singular controls and chattering arcs in optimal control problems arising in biomedicine”, Control Cybern., 38:4B (2009), 1501–1523
[14] Ledzewicz U., Schättler H., “Multi-input optimal control problems for combined tumor anti-angiogenic and radiotherapy treatments”, J. Optim. Theory Appl., 153:1 (2012), 195–224 | DOI | MR
[15] L. V. Lokutsievskiy, “Convex trigonometry with applications to sub-Finsler geometry”, Sb. Math., 210:8 (2019), 1179–1205 | DOI | MR
[16] L. A. Manita, “Optimal operating modes with chattering switching in manipulator control problems”, J. Appl. Math. Mech., 64:1 (2000), 17–24 | DOI | MR
[17] L. A. Manita and M. I. Ronzhina, “Optimal synthesis in the control problem of an $n$-link inverted pendulum with a moving base”, J. Math. Sci., 221:1 (2017), 137–153 | DOI | MR
[18] Manita L., Ronzhina M., “Optimal control of a spherical inverted pendulum”, Lobachevskii J. Math., 38:5 (2017), 954–957 | DOI | MR
[19] Manita L., Ronzhina M., On properties of optimal controls for an inverted spherical pendulum, E-print, 2019, arXiv: 1909.04708 [math.OC]
[20] Manita L., Ronzhina M., “Singularity of optimal control in the problem of stabilizing a nonlinear inverted spherical pendulum”, J. Phys.: Conf. Ser., 1163 (2019), 012058 | DOI
[21] Park C., “Necessary conditions for the optimality of singular arcs of spacecraft trajectories subject to multiple gravitational bodies”, Adv. Space Res., 51:11 (2013), 2125–2135 | DOI
[22] Reister D.B., Lenhart S.M., “Time-optimal paths for high-speed maneuvering”, Int. J. Robot. Res., 14:2 (1995), 184–194 | DOI
[23] Robbins H.M., “Optimality of intermediate-thrust arcs of rocket trajectories”, AIAA J., 3:6 (1965), 1094–1098 | DOI | MR
[24] Ronzhina M., Manita L., “Singularity of optimal control for a Timoshenko beam”, J. Phys.: Conf. Ser., 1740 (2021), 012068 | DOI
[25] Seywald H., Kumar R.R., “Singular control in minimum time spacecraft reorientation”, J. Guid. Control Dyn., 16:4 (1993), 686–694 | DOI
[26] Shen H., Tsiotras P., “Time-optimal control of axisymmetric rigid spacecraft using two controls”, J. Guid. Control Dyn., 22:5 (1999), 682–694 | DOI
[27] Yegorov I., Bratus A., Todorov Y., “Synthesis of optimal control in a mathematical model of economic growth under R investments”, Appl. Math. Sci., 9:91 (2015), 4523–4564
[28] Yegorov I., Mairet F., Gouzé J.-L., “Optimal feedback strategies for bacterial growth with degradation, recycling, and effect of temperature”, Optim. Control Appl. Methods, 39:2 (2018), 1084–1109 | DOI | MR
[29] M. I. Zelikin, L. V. Lokutsievskii, and R. Hildebrand, “Typicality of chaotic fractal behavior of integral vortices in Hamiltonian systems with discontinuous right hand side”, J. Math. Sci., 221:1 (2017), 1–136 | DOI | MR
[30] Zelikin M.I., Borisov V.F., Theory of chattering control with applications to astronautics, robotics, economics, and engineering, Birkhäuser, Boston, 1994
[31] Zelikin M.I., Borisov V.F., “Singular optimal regimes in problems of mathematical economics”, J. Math. Sci., 130:1 (2005), 4409–4570 | DOI | MR
[32] Zelikin M.I., Manita L.A., “Optimal control for a Timoshenko beam”, C. r. Méc. Acad. sci. Paris, 334:5 (2006), 292–297
[33] Zhu J., Trélat E., Cerf M., “Minimum time control of the rocket attitude reorientation associated with orbit dynamics”, SIAM J. Control Optim., 54:1 (2016), 391–422 | DOI | MR
[34] Zhu J., Trélat E., Cerf M., “Planar tilting maneuver of a spacecraft: Singular arcs in the minimum time problem and chattering”, Discrete Contin. Dyn. Syst. Ser. B, 21:4 (2016), 1347–1388 | DOI | MR