Neighborhood of the Second-Order Singular Regime in Problems with Control in a Disk
Informatics and Automation, Optimal Control and Differential Games, Tome 315 (2021), pp. 222-236
Voir la notice de l'article provenant de la source Math-Net.Ru
We consider Hamiltonian systems that are affine in a two-dimensional control with values in a disk. In the neighborhood of a second-order singular extremal, we study the structure of optimal synthesis and find a family of solutions in the form of logarithmic spirals that make countably many revolutions around a singular point and reach this point in finite time.
@article{TRSPY_2021_315_a15,
author = {M. I. Ronzhina and L. A. Manita and L. V. Lokutsievskiy},
title = {Neighborhood of the {Second-Order} {Singular} {Regime} in {Problems} with {Control} in a {Disk}},
journal = {Informatics and Automation},
pages = {222--236},
publisher = {mathdoc},
volume = {315},
year = {2021},
language = {ru},
url = {http://geodesic.mathdoc.fr/item/TRSPY_2021_315_a15/}
}
TY - JOUR AU - M. I. Ronzhina AU - L. A. Manita AU - L. V. Lokutsievskiy TI - Neighborhood of the Second-Order Singular Regime in Problems with Control in a Disk JO - Informatics and Automation PY - 2021 SP - 222 EP - 236 VL - 315 PB - mathdoc UR - http://geodesic.mathdoc.fr/item/TRSPY_2021_315_a15/ LA - ru ID - TRSPY_2021_315_a15 ER -
%0 Journal Article %A M. I. Ronzhina %A L. A. Manita %A L. V. Lokutsievskiy %T Neighborhood of the Second-Order Singular Regime in Problems with Control in a Disk %J Informatics and Automation %D 2021 %P 222-236 %V 315 %I mathdoc %U http://geodesic.mathdoc.fr/item/TRSPY_2021_315_a15/ %G ru %F TRSPY_2021_315_a15
M. I. Ronzhina; L. A. Manita; L. V. Lokutsievskiy. Neighborhood of the Second-Order Singular Regime in Problems with Control in a Disk. Informatics and Automation, Optimal Control and Differential Games, Tome 315 (2021), pp. 222-236. http://geodesic.mathdoc.fr/item/TRSPY_2021_315_a15/