Limit Passage in the Construction of a Geometric Solution: The Case of a Rarefaction Wave
Informatics and Automation, Optimal Control and Differential Games, Tome 315 (2021), pp. 182-201
Cet article a éte moissonné depuis la source Math-Net.Ru
A method for constructing a geometric solution of the Riemann problem is described for a scalar conservation law perturbed by a rarefaction wave. The phase flow of the associated autonomous system is described topologically, and an explicit formula for the Hausdorff limit defining a geometric solution is presented.
@article{TRSPY_2021_315_a12,
author = {V. V. Palin},
title = {Limit {Passage} in the {Construction} of a {Geometric} {Solution:} {The} {Case} of a {Rarefaction} {Wave}},
journal = {Informatics and Automation},
pages = {182--201},
year = {2021},
volume = {315},
language = {ru},
url = {http://geodesic.mathdoc.fr/item/TRSPY_2021_315_a12/}
}
V. V. Palin. Limit Passage in the Construction of a Geometric Solution: The Case of a Rarefaction Wave. Informatics and Automation, Optimal Control and Differential Games, Tome 315 (2021), pp. 182-201. http://geodesic.mathdoc.fr/item/TRSPY_2021_315_a12/
[1] Burago D., Burago Yu., Ivanov S., A course in metric geometry, Grad. Stud. Math., 33, Amer. Math. Soc., Providence, RI, 2001 | DOI
[2] A. F. Filippov, Differential Equations with Discontinuous Right-Hand Sides, Kluwer, Dordrecht, 1988
[3] P. D. Lax, Hyperbolic Partial Differential Equations, Courant Lect. Notes Math., 14, Am. Math. Soc., Providence, RI, 2006 | DOI
[4] Palin V.V., “Konstruktsiya geometricheskogo resheniya v sluchae volny razrezheniya”, Zap. nauchn. sem. POMI, 489, 2020, 55–66 | MR
[5] V. V. Palin, “On the passage to the limit in the construction of geometric solutions of the Riemann problem”, Math. Notes, 108:3–4 (2020), 356–369 | DOI | MR