Covering Mappings Acting into Normed Spaces and Coincidence Points
Informatics and Automation, Optimal Control and Differential Games, Tome 315 (2021), pp. 19-25.

Voir la notice de l'article provenant de la source Math-Net.Ru

We study the solvability of an equation generated by a mapping acting from a metric space into a normed space. For the radii of balls lying in the image of the mapping, we obtain an estimate in terms of covering mappings. Applying this result, we find conditions for the existence of coincidence points of two mappings.
@article{TRSPY_2021_315_a1,
     author = {A. V. Arutyunov and S. E. Zhukovskiy},
     title = {Covering {Mappings} {Acting} into {Normed} {Spaces} and {Coincidence} {Points}},
     journal = {Informatics and Automation},
     pages = {19--25},
     publisher = {mathdoc},
     volume = {315},
     year = {2021},
     language = {ru},
     url = {http://geodesic.mathdoc.fr/item/TRSPY_2021_315_a1/}
}
TY  - JOUR
AU  - A. V. Arutyunov
AU  - S. E. Zhukovskiy
TI  - Covering Mappings Acting into Normed Spaces and Coincidence Points
JO  - Informatics and Automation
PY  - 2021
SP  - 19
EP  - 25
VL  - 315
PB  - mathdoc
UR  - http://geodesic.mathdoc.fr/item/TRSPY_2021_315_a1/
LA  - ru
ID  - TRSPY_2021_315_a1
ER  - 
%0 Journal Article
%A A. V. Arutyunov
%A S. E. Zhukovskiy
%T Covering Mappings Acting into Normed Spaces and Coincidence Points
%J Informatics and Automation
%D 2021
%P 19-25
%V 315
%I mathdoc
%U http://geodesic.mathdoc.fr/item/TRSPY_2021_315_a1/
%G ru
%F TRSPY_2021_315_a1
A. V. Arutyunov; S. E. Zhukovskiy. Covering Mappings Acting into Normed Spaces and Coincidence Points. Informatics and Automation, Optimal Control and Differential Games, Tome 315 (2021), pp. 19-25. http://geodesic.mathdoc.fr/item/TRSPY_2021_315_a1/

[1] A. V. Arutyunov, “Covering mappings in metric spaces and fixed points”, Dokl. Math., 76:2 (2007), 665–668 | DOI | MR

[2] Arutyunov A., Avakov E., Gel'man B., Dmitruk A., Obukhovskii V., “Locally covering maps in metric spaces and coincidence points”, J. Fixed Point Theory Appl., 5:1 (2009), 105–127 | DOI | MR

[3] Arutyunov A.V., Obukhovskii V., Convex and set-valued analysis. Selected topics, De Gruyter, Berlin, 2017

[4] A. V. Arutyunov, E. S. Zhukovskiy, and S. E. Zhukovskiy, “Kantorovich's fixed point theorem in metric spaces and coincidence points”, Proc. Steklov Inst. Math., 304 (2019), 60–73 | DOI | MR

[5] Arutyunov A.V., Zhukovskiy E.S., Zhukovskiy S.E., “On the stability of fixed points and coincidence points of mappings in the generalized Kantorovich's theorem”, Topology Appl., 275 (2020), 107030 | DOI | MR

[6] B. D. Gel'man, “Periodic trajectories and coincidence points of tuples of set-valued maps”, Funct. Anal. Appl., 52:2 (2018), 139–143 | DOI | MR

[7] Zubelevich O., “Coincidence points of mappings in Banach spaces”, Fixed Point Theory, 21:1 (2020), 389–394 ; arXiv: 1804.10501 [math.FA] | DOI | MR