Difference Sets and Positive Exponential Sums. II: Cubic Residues in Cyclic Groups
Informatics and Automation, Analytic and Combinatorial Number Theory, Tome 314 (2021), pp. 145-151
Voir la notice de l'article provenant de la source Math-Net.Ru
By constructing suitable nonnegative exponential sums, we give upper bounds on the cardinality of any set $B_q$ in cyclic groups $\mathbb Z_q$ such that the difference set $B_q-B_q$ avoids cubic residues modulo $q$.
@article{TRSPY_2021_314_a7,
author = {M\'at\'e Matolcsi and Imre Z. Ruzsa},
title = {Difference {Sets} and {Positive} {Exponential} {Sums.} {II:} {Cubic} {Residues} in {Cyclic} {Groups}},
journal = {Informatics and Automation},
pages = {145--151},
publisher = {mathdoc},
volume = {314},
year = {2021},
language = {ru},
url = {http://geodesic.mathdoc.fr/item/TRSPY_2021_314_a7/}
}
TY - JOUR AU - Máté Matolcsi AU - Imre Z. Ruzsa TI - Difference Sets and Positive Exponential Sums. II: Cubic Residues in Cyclic Groups JO - Informatics and Automation PY - 2021 SP - 145 EP - 151 VL - 314 PB - mathdoc UR - http://geodesic.mathdoc.fr/item/TRSPY_2021_314_a7/ LA - ru ID - TRSPY_2021_314_a7 ER -
Máté Matolcsi; Imre Z. Ruzsa. Difference Sets and Positive Exponential Sums. II: Cubic Residues in Cyclic Groups. Informatics and Automation, Analytic and Combinatorial Number Theory, Tome 314 (2021), pp. 145-151. http://geodesic.mathdoc.fr/item/TRSPY_2021_314_a7/