Difference Sets and Positive Exponential Sums. II: Cubic Residues in Cyclic Groups
Informatics and Automation, Analytic and Combinatorial Number Theory, Tome 314 (2021), pp. 145-151
Cet article a éte moissonné depuis la source Math-Net.Ru
By constructing suitable nonnegative exponential sums, we give upper bounds on the cardinality of any set $B_q$ in cyclic groups $\mathbb Z_q$ such that the difference set $B_q-B_q$ avoids cubic residues modulo $q$.
@article{TRSPY_2021_314_a7,
author = {M\'at\'e Matolcsi and Imre Z. Ruzsa},
title = {Difference {Sets} and {Positive} {Exponential} {Sums.} {II:} {Cubic} {Residues} in {Cyclic} {Groups}},
journal = {Informatics and Automation},
pages = {145--151},
year = {2021},
volume = {314},
language = {ru},
url = {http://geodesic.mathdoc.fr/item/TRSPY_2021_314_a7/}
}
Máté Matolcsi; Imre Z. Ruzsa. Difference Sets and Positive Exponential Sums. II: Cubic Residues in Cyclic Groups. Informatics and Automation, Analytic and Combinatorial Number Theory, Tome 314 (2021), pp. 145-151. http://geodesic.mathdoc.fr/item/TRSPY_2021_314_a7/
[1] Cohen S.D., “Clique numbers of Paley graphs”, Quaest. math., 11:2 (1988), 225–231 | DOI | MR | Zbl
[2] M. R. Gabdullin, “Sets in $\mathbb Z_m$ whose difference sets avoid squares”, Sb. Math., 209:11 (2018), 1603–1610 | DOI | MR | Zbl
[3] Matolcsi M., Ruzsa I.Z., “Difference sets and positive exponential sums. I: General properties”, J. Fourier Anal. Appl., 20:1 (2014), 17–41 | DOI | MR | Zbl
[4] Vaughan R.C., The Hardy–Littlewood method, Cambridge Tracts Math., 125, 2nd ed., Cambridge Univ. Press, Cambridge, 1997 | MR | Zbl