On the Thermalization Hypothesis of Quantum States
Informatics and Automation, Mathematics of Quantum Technologies, Tome 313 (2021), pp. 285-295

Voir la notice de l'article provenant de la source Math-Net.Ru

The eigenstate thermalization hypothesis (ETH) is discussed. We note that one common formulation of the ETH does not necessarily imply thermalization of an observable of an isolated many-body quantum system. We show that to get thermalization, one has to postulate the canonical or microcanonical distribution in the ETH ansatz. More generally, any other average can be postulated in the generalized ETH ansatz, which leads to a corresponding equilibration condition.
Keywords: ETH, eigenstate thermalization hypothesis, thermalization
Mots-clés : equilibration.
@article{TRSPY_2021_313_a24,
     author = {I. V. Volovich and O. V. Inozemcev},
     title = {On the {Thermalization} {Hypothesis} of {Quantum} {States}},
     journal = {Informatics and Automation},
     pages = {285--295},
     publisher = {mathdoc},
     volume = {313},
     year = {2021},
     language = {ru},
     url = {http://geodesic.mathdoc.fr/item/TRSPY_2021_313_a24/}
}
TY  - JOUR
AU  - I. V. Volovich
AU  - O. V. Inozemcev
TI  - On the Thermalization Hypothesis of Quantum States
JO  - Informatics and Automation
PY  - 2021
SP  - 285
EP  - 295
VL  - 313
PB  - mathdoc
UR  - http://geodesic.mathdoc.fr/item/TRSPY_2021_313_a24/
LA  - ru
ID  - TRSPY_2021_313_a24
ER  - 
%0 Journal Article
%A I. V. Volovich
%A O. V. Inozemcev
%T On the Thermalization Hypothesis of Quantum States
%J Informatics and Automation
%D 2021
%P 285-295
%V 313
%I mathdoc
%U http://geodesic.mathdoc.fr/item/TRSPY_2021_313_a24/
%G ru
%F TRSPY_2021_313_a24
I. V. Volovich; O. V. Inozemcev. On the Thermalization Hypothesis of Quantum States. Informatics and Automation, Mathematics of Quantum Technologies, Tome 313 (2021), pp. 285-295. http://geodesic.mathdoc.fr/item/TRSPY_2021_313_a24/