Properties of Topological Measures on Classes of Subspaces of an Inner Product Space
Informatics and Automation, Mathematics of Quantum Technologies, Tome 313 (2021), pp. 245-252 Cet article a éte moissonné depuis la source Math-Net.Ru

Voir la notice de l'article

We study topological measures on classes of subspaces of an inner product space. The existence of topological measures is discussed, and their relation to measures on orthoprojections from $\mathcal {B}(H)^{\mathrm{pr}}$ is considered, where $H$ is the completion of the inner product space in question. We also find properties of topological measures defined on classes of splitting and (co)complete subspaces of an inner product space.
@article{TRSPY_2021_313_a19,
     author = {V. I. Sukharev and E. A. Turilova},
     title = {Properties of {Topological} {Measures} on {Classes} of {Subspaces} of an {Inner} {Product} {Space}},
     journal = {Informatics and Automation},
     pages = {245--252},
     year = {2021},
     volume = {313},
     language = {ru},
     url = {http://geodesic.mathdoc.fr/item/TRSPY_2021_313_a19/}
}
TY  - JOUR
AU  - V. I. Sukharev
AU  - E. A. Turilova
TI  - Properties of Topological Measures on Classes of Subspaces of an Inner Product Space
JO  - Informatics and Automation
PY  - 2021
SP  - 245
EP  - 252
VL  - 313
UR  - http://geodesic.mathdoc.fr/item/TRSPY_2021_313_a19/
LA  - ru
ID  - TRSPY_2021_313_a19
ER  - 
%0 Journal Article
%A V. I. Sukharev
%A E. A. Turilova
%T Properties of Topological Measures on Classes of Subspaces of an Inner Product Space
%J Informatics and Automation
%D 2021
%P 245-252
%V 313
%U http://geodesic.mathdoc.fr/item/TRSPY_2021_313_a19/
%G ru
%F TRSPY_2021_313_a19
V. I. Sukharev; E. A. Turilova. Properties of Topological Measures on Classes of Subspaces of an Inner Product Space. Informatics and Automation, Mathematics of Quantum Technologies, Tome 313 (2021), pp. 245-252. http://geodesic.mathdoc.fr/item/TRSPY_2021_313_a19/

[1] Amemiya I., Araki H., “A remark on Piron's paper”, Publ. Res. Inst. Math. Sci. Kyoto Univ. Ser. A, 2 (1966), 423–427 | DOI | MR | Zbl

[2] Dvurečenskij A., “Regular measures and inner product spaces”, Int. J. Theor. Phys., 31:5 (1992), 889–905 | DOI | MR

[3] Dvurečenskij A., Gleason's theorem and its applications, Kluwer, Dordrecht, 1993 | MR | Zbl

[4] Gross H., Keller H.A., “On the definition of Hilbert space”, Manuscr. math., 23 (1977), 67–90 | DOI | MR | Zbl

[5] Gudder S., “Inner product spaces”, Amer. Math. Mon., 81 (1974), 29–36 | DOI | MR | Zbl

[6] Hamhalter J., Quantum measure theory, Kluwer, Dordrecht, 2003 | MR | Zbl

[7] Hamhalter J., Pták P., “A completeness criterion for inner product spaces”, Bull. London Math. Soc., 19 (1987), 259–263 | DOI | MR | Zbl

[8] J. von Neumann, Mathematical Foundations of Quantum Mechanics, Princeton Univ. Press, Princeton, NJ, 2018 | MR | Zbl

[9] Turilova E., “Measures on classes of subspaces affiliated with a von Neumann algebra”, Int. J. Theor. Phys., 48:11 (2009), 3083–3091 | DOI | MR | Zbl