Tunneling in Double-Layer Optical Waveguides as Quantum Walks on Graphs
Informatics and Automation, Mathematics of Quantum Technologies, Tome 313 (2021), pp. 154-160

Voir la notice de l'article provenant de la source Math-Net.Ru

Modern integrated photonic quantum technologies are based on optical waveguides. The propagation of light in optical waveguides allows one to implement quantum computation and bosonic quantum simulation. Nevertheless, to further develop photonic quantum devices, one needs a precise mathematical description of quantum dynamics in waveguides. In this paper, we consider a double-layer array of optical waveguides and find exact analytical expressions for the Hamiltonian of the system and its parameters. The results are obtained both in the ideal waveguide approximation and in the case of photon loss in the waveguides.
Keywords: quantum walks, optical waveguides.
@article{TRSPY_2021_313_a13,
     author = {A. A. Melnikov and A. P. Alodjants and L. E. Fedichkin},
     title = {Tunneling in {Double-Layer} {Optical} {Waveguides} as {Quantum} {Walks} on {Graphs}},
     journal = {Informatics and Automation},
     pages = {154--160},
     publisher = {mathdoc},
     volume = {313},
     year = {2021},
     language = {ru},
     url = {http://geodesic.mathdoc.fr/item/TRSPY_2021_313_a13/}
}
TY  - JOUR
AU  - A. A. Melnikov
AU  - A. P. Alodjants
AU  - L. E. Fedichkin
TI  - Tunneling in Double-Layer Optical Waveguides as Quantum Walks on Graphs
JO  - Informatics and Automation
PY  - 2021
SP  - 154
EP  - 160
VL  - 313
PB  - mathdoc
UR  - http://geodesic.mathdoc.fr/item/TRSPY_2021_313_a13/
LA  - ru
ID  - TRSPY_2021_313_a13
ER  - 
%0 Journal Article
%A A. A. Melnikov
%A A. P. Alodjants
%A L. E. Fedichkin
%T Tunneling in Double-Layer Optical Waveguides as Quantum Walks on Graphs
%J Informatics and Automation
%D 2021
%P 154-160
%V 313
%I mathdoc
%U http://geodesic.mathdoc.fr/item/TRSPY_2021_313_a13/
%G ru
%F TRSPY_2021_313_a13
A. A. Melnikov; A. P. Alodjants; L. E. Fedichkin. Tunneling in Double-Layer Optical Waveguides as Quantum Walks on Graphs. Informatics and Automation, Mathematics of Quantum Technologies, Tome 313 (2021), pp. 154-160. http://geodesic.mathdoc.fr/item/TRSPY_2021_313_a13/