On the Density of Compactly Supported Functions in a Space with Multiweighted Derivatives
Informatics and Automation, Function Spaces, Approximation Theory, and Related Problems of Analysis, Tome 312 (2021), pp. 188-202.

Voir la notice de l'article provenant de la source Math-Net.Ru

We define a space with multiweighted derivatives on the half-axis. A multiweighted derivative of a function is an operation under which each subsequent derivative is taken of the function multiplied by some weight function. All weight functions involved in the definition of a multiweighted derivative are assumed to be sufficiently smooth; therefore, the set of compactly supported infinitely smooth functions belongs to the space with multiweighted derivatives, and the closure of this set in the norm of the space is a subspace of the latter. We study the mutual relation between these spaces depending on the integral behavior of the weight functions in the neighborhood of zero and infinity.
Keywords: weight function, multiweighted derivative, space with multiweighted derivatives, closure of the set of compactly supported functions, density.
@article{TRSPY_2021_312_a9,
     author = {A. A. Kalybay and Zh. A. Keulimzhayeva and R. Oinarov},
     title = {On the {Density} of {Compactly} {Supported} {Functions} in a {Space} with {Multiweighted} {Derivatives}},
     journal = {Informatics and Automation},
     pages = {188--202},
     publisher = {mathdoc},
     volume = {312},
     year = {2021},
     language = {ru},
     url = {http://geodesic.mathdoc.fr/item/TRSPY_2021_312_a9/}
}
TY  - JOUR
AU  - A. A. Kalybay
AU  - Zh. A. Keulimzhayeva
AU  - R. Oinarov
TI  - On the Density of Compactly Supported Functions in a Space with Multiweighted Derivatives
JO  - Informatics and Automation
PY  - 2021
SP  - 188
EP  - 202
VL  - 312
PB  - mathdoc
UR  - http://geodesic.mathdoc.fr/item/TRSPY_2021_312_a9/
LA  - ru
ID  - TRSPY_2021_312_a9
ER  - 
%0 Journal Article
%A A. A. Kalybay
%A Zh. A. Keulimzhayeva
%A R. Oinarov
%T On the Density of Compactly Supported Functions in a Space with Multiweighted Derivatives
%J Informatics and Automation
%D 2021
%P 188-202
%V 312
%I mathdoc
%U http://geodesic.mathdoc.fr/item/TRSPY_2021_312_a9/
%G ru
%F TRSPY_2021_312_a9
A. A. Kalybay; Zh. A. Keulimzhayeva; R. Oinarov. On the Density of Compactly Supported Functions in a Space with Multiweighted Derivatives. Informatics and Automation, Function Spaces, Approximation Theory, and Related Problems of Analysis, Tome 312 (2021), pp. 188-202. http://geodesic.mathdoc.fr/item/TRSPY_2021_312_a9/

[1] Abdikalikova Z., Some new results concerning boundedness and compactness for embeddings between spaces with multiweighted derivatives, Doctoral thesis, Luleå Univ. Technol., Luleå, 2009

[2] B. L. Baidel'dinov, The theory of multiweighted spaces and its application to boundary value problems for singular differential equations, Doctoral (Phys.–Math.) Dissertation, Almaty, 1998

[3] O. V. Besov, “On the denseness of the compactly supported functions in a weighted Sobolev space”, Proc. Steklov Inst. Math., 161 (1984), 33–52 | MR | Zbl | Zbl

[4] O. V. Besov, V. P. Il'in, and S. M. Nikol'skii, Integral Representations of Functions and Imbedding Theorems, J. Wiley Sons, New York, 1979 | MR | Zbl

[5] A. A. Kalybay, “A generalized multiparameter weighted Nikol'skii–Lizorkin inequality”, Dokl. Math., 68:1 (2003), 121–127 | MR | Zbl

[6] Kalybay A.A., Keulimzhayeva Zh.A., Oinarov R., “On a Kudryavtsev type function space”, Eurasian Math. J., 10:4 (2019), 34–36 | DOI | MR

[7] Kalybay A.A., Oinarov R., “Some properties of spaces with multiweighted derivatives”, Progress in analysis, Proc. 3rd Int. ISAAC Congr. (2001), v. 1, World Scientific, River Edge, NJ, 2003, 1–13 | MR

[8] L. D. Kudryavtsev, “On the construction of a sequence of compactly supported functions approximating functions from weighted classes”, Proc. Steklov Inst. Math., 156 (1983), 131–139 | Zbl | Zbl

[9] L. D. Kudryavtsev, “On equivalent norms in weighted spaces”, Proc. Steklov Inst. Math., 170 (1987), 185–218 | MR | Zbl | Zbl

[10] Kudryavtsev L.D., “On norms in weighted spaces of functions given on infinite intervals”, Anal. math., 12 (1986), 269–282 | DOI | MR | Zbl

[11] L. D. Kudryavtsev and S. M. Nikol'skii, “Spaces of differentiable functions of several variables and imbedding theorems”, Analysis III: Spaces of Differentiable Functions, Encycl. Math. Sci., 26, Springer, Berlin, 1991, 1–140 | MR

[12] P. I. Lizorkin, “On the closure of the set of compactly supported functions in the weighted space $W^l_{p,\Phi }$”, Sov. Math., Dokl., 19 (1978), 420–424 | MR | Zbl

[13] P. I. Lizorkin and S. M. Nikol'skii, “Coercive properties of elliptic equations with degeneracies. Variational methods”, Proc. Steklov Inst. Math., 157 (1983), 95–125 | MR | Zbl | Zbl

[14] P. I. Lizorkin and S. M. Nikol'skii, “Coercive properties of an elliptic equation with degeneracy and a generalized right-hand side”, Proc. Steklov Inst. Math., 161 (1984), 171–198 | MR | Zbl | Zbl

[15] R. Oinarov, “On the denseness of the compactly supported functions in weighted spaces, and on weighted inequalities”, Sov. Math., Dokl., 38:3 (1989), 575–579 | MR | Zbl