Voir la notice de l'article provenant de la source Math-Net.Ru
@article{TRSPY_2021_312_a9, author = {A. A. Kalybay and Zh. A. Keulimzhayeva and R. Oinarov}, title = {On the {Density} of {Compactly} {Supported} {Functions} in a {Space} with {Multiweighted} {Derivatives}}, journal = {Informatics and Automation}, pages = {188--202}, publisher = {mathdoc}, volume = {312}, year = {2021}, language = {ru}, url = {http://geodesic.mathdoc.fr/item/TRSPY_2021_312_a9/} }
TY - JOUR AU - A. A. Kalybay AU - Zh. A. Keulimzhayeva AU - R. Oinarov TI - On the Density of Compactly Supported Functions in a Space with Multiweighted Derivatives JO - Informatics and Automation PY - 2021 SP - 188 EP - 202 VL - 312 PB - mathdoc UR - http://geodesic.mathdoc.fr/item/TRSPY_2021_312_a9/ LA - ru ID - TRSPY_2021_312_a9 ER -
%0 Journal Article %A A. A. Kalybay %A Zh. A. Keulimzhayeva %A R. Oinarov %T On the Density of Compactly Supported Functions in a Space with Multiweighted Derivatives %J Informatics and Automation %D 2021 %P 188-202 %V 312 %I mathdoc %U http://geodesic.mathdoc.fr/item/TRSPY_2021_312_a9/ %G ru %F TRSPY_2021_312_a9
A. A. Kalybay; Zh. A. Keulimzhayeva; R. Oinarov. On the Density of Compactly Supported Functions in a Space with Multiweighted Derivatives. Informatics and Automation, Function Spaces, Approximation Theory, and Related Problems of Analysis, Tome 312 (2021), pp. 188-202. http://geodesic.mathdoc.fr/item/TRSPY_2021_312_a9/
[1] Abdikalikova Z., Some new results concerning boundedness and compactness for embeddings between spaces with multiweighted derivatives, Doctoral thesis, Luleå Univ. Technol., Luleå, 2009
[2] B. L. Baidel'dinov, The theory of multiweighted spaces and its application to boundary value problems for singular differential equations, Doctoral (Phys.–Math.) Dissertation, Almaty, 1998
[3] O. V. Besov, “On the denseness of the compactly supported functions in a weighted Sobolev space”, Proc. Steklov Inst. Math., 161 (1984), 33–52 | MR | Zbl | Zbl
[4] O. V. Besov, V. P. Il'in, and S. M. Nikol'skii, Integral Representations of Functions and Imbedding Theorems, J. Wiley Sons, New York, 1979 | MR | Zbl
[5] A. A. Kalybay, “A generalized multiparameter weighted Nikol'skii–Lizorkin inequality”, Dokl. Math., 68:1 (2003), 121–127 | MR | Zbl
[6] Kalybay A.A., Keulimzhayeva Zh.A., Oinarov R., “On a Kudryavtsev type function space”, Eurasian Math. J., 10:4 (2019), 34–36 | DOI | MR
[7] Kalybay A.A., Oinarov R., “Some properties of spaces with multiweighted derivatives”, Progress in analysis, Proc. 3rd Int. ISAAC Congr. (2001), v. 1, World Scientific, River Edge, NJ, 2003, 1–13 | MR
[8] L. D. Kudryavtsev, “On the construction of a sequence of compactly supported functions approximating functions from weighted classes”, Proc. Steklov Inst. Math., 156 (1983), 131–139 | Zbl | Zbl
[9] L. D. Kudryavtsev, “On equivalent norms in weighted spaces”, Proc. Steklov Inst. Math., 170 (1987), 185–218 | MR | Zbl | Zbl
[10] Kudryavtsev L.D., “On norms in weighted spaces of functions given on infinite intervals”, Anal. math., 12 (1986), 269–282 | DOI | MR | Zbl
[11] L. D. Kudryavtsev and S. M. Nikol'skii, “Spaces of differentiable functions of several variables and imbedding theorems”, Analysis III: Spaces of Differentiable Functions, Encycl. Math. Sci., 26, Springer, Berlin, 1991, 1–140 | MR
[12] P. I. Lizorkin, “On the closure of the set of compactly supported functions in the weighted space $W^l_{p,\Phi }$”, Sov. Math., Dokl., 19 (1978), 420–424 | MR | Zbl
[13] P. I. Lizorkin and S. M. Nikol'skii, “Coercive properties of elliptic equations with degeneracies. Variational methods”, Proc. Steklov Inst. Math., 157 (1983), 95–125 | MR | Zbl | Zbl
[14] P. I. Lizorkin and S. M. Nikol'skii, “Coercive properties of an elliptic equation with degeneracy and a generalized right-hand side”, Proc. Steklov Inst. Math., 161 (1984), 171–198 | MR | Zbl | Zbl
[15] R. Oinarov, “On the denseness of the compactly supported functions in weighted spaces, and on weighted inequalities”, Sov. Math., Dokl., 38:3 (1989), 575–579 | MR | Zbl