On the Density of Compactly Supported Functions in a Space with Multiweighted Derivatives
Informatics and Automation, Function Spaces, Approximation Theory, and Related Problems of Analysis, Tome 312 (2021), pp. 188-202

Voir la notice de l'article provenant de la source Math-Net.Ru

We define a space with multiweighted derivatives on the half-axis. A multiweighted derivative of a function is an operation under which each subsequent derivative is taken of the function multiplied by some weight function. All weight functions involved in the definition of a multiweighted derivative are assumed to be sufficiently smooth; therefore, the set of compactly supported infinitely smooth functions belongs to the space with multiweighted derivatives, and the closure of this set in the norm of the space is a subspace of the latter. We study the mutual relation between these spaces depending on the integral behavior of the weight functions in the neighborhood of zero and infinity.
Keywords: weight function, multiweighted derivative, space with multiweighted derivatives, closure of the set of compactly supported functions, density.
@article{TRSPY_2021_312_a9,
     author = {A. A. Kalybay and Zh. A. Keulimzhayeva and R. Oinarov},
     title = {On the {Density} of {Compactly} {Supported} {Functions} in a {Space} with {Multiweighted} {Derivatives}},
     journal = {Informatics and Automation},
     pages = {188--202},
     publisher = {mathdoc},
     volume = {312},
     year = {2021},
     language = {ru},
     url = {http://geodesic.mathdoc.fr/item/TRSPY_2021_312_a9/}
}
TY  - JOUR
AU  - A. A. Kalybay
AU  - Zh. A. Keulimzhayeva
AU  - R. Oinarov
TI  - On the Density of Compactly Supported Functions in a Space with Multiweighted Derivatives
JO  - Informatics and Automation
PY  - 2021
SP  - 188
EP  - 202
VL  - 312
PB  - mathdoc
UR  - http://geodesic.mathdoc.fr/item/TRSPY_2021_312_a9/
LA  - ru
ID  - TRSPY_2021_312_a9
ER  - 
%0 Journal Article
%A A. A. Kalybay
%A Zh. A. Keulimzhayeva
%A R. Oinarov
%T On the Density of Compactly Supported Functions in a Space with Multiweighted Derivatives
%J Informatics and Automation
%D 2021
%P 188-202
%V 312
%I mathdoc
%U http://geodesic.mathdoc.fr/item/TRSPY_2021_312_a9/
%G ru
%F TRSPY_2021_312_a9
A. A. Kalybay; Zh. A. Keulimzhayeva; R. Oinarov. On the Density of Compactly Supported Functions in a Space with Multiweighted Derivatives. Informatics and Automation, Function Spaces, Approximation Theory, and Related Problems of Analysis, Tome 312 (2021), pp. 188-202. http://geodesic.mathdoc.fr/item/TRSPY_2021_312_a9/