Interpolation Theorems for Nonlinear Operators in General Morrey-Type Spaces and Their Applications
Informatics and Automation, Function Spaces, Approximation Theory, and Related Problems of Analysis, Tome 312 (2021), pp. 131-157.

Voir la notice de l'article provenant de la source Math-Net.Ru

We prove new interpolation theorems for a sufficiently wide class of nonlinear operators in Morrey-type spaces. In particular, these theorems apply to Urysohn integral operators. We also obtain analogs of the Marcinkiewicz–Calderón and Stein–Weiss–Peetre interpolation theorems and establish a criterion of $(p,q)$ quasiweak boundedness of the Urysohn operator.
@article{TRSPY_2021_312_a6,
     author = {V. I. Burenkov and E. D. Nursultanov},
     title = {Interpolation {Theorems} for {Nonlinear} {Operators} in {General} {Morrey-Type} {Spaces} and {Their} {Applications}},
     journal = {Informatics and Automation},
     pages = {131--157},
     publisher = {mathdoc},
     volume = {312},
     year = {2021},
     language = {ru},
     url = {http://geodesic.mathdoc.fr/item/TRSPY_2021_312_a6/}
}
TY  - JOUR
AU  - V. I. Burenkov
AU  - E. D. Nursultanov
TI  - Interpolation Theorems for Nonlinear Operators in General Morrey-Type Spaces and Their Applications
JO  - Informatics and Automation
PY  - 2021
SP  - 131
EP  - 157
VL  - 312
PB  - mathdoc
UR  - http://geodesic.mathdoc.fr/item/TRSPY_2021_312_a6/
LA  - ru
ID  - TRSPY_2021_312_a6
ER  - 
%0 Journal Article
%A V. I. Burenkov
%A E. D. Nursultanov
%T Interpolation Theorems for Nonlinear Operators in General Morrey-Type Spaces and Their Applications
%J Informatics and Automation
%D 2021
%P 131-157
%V 312
%I mathdoc
%U http://geodesic.mathdoc.fr/item/TRSPY_2021_312_a6/
%G ru
%F TRSPY_2021_312_a6
V. I. Burenkov; E. D. Nursultanov. Interpolation Theorems for Nonlinear Operators in General Morrey-Type Spaces and Their Applications. Informatics and Automation, Function Spaces, Approximation Theory, and Related Problems of Analysis, Tome 312 (2021), pp. 131-157. http://geodesic.mathdoc.fr/item/TRSPY_2021_312_a6/

[1] T. U. Aubakirov and E. D. Nursultanov, “Spaces of stochastic processes, interpolation theorems”, Russ. Math. Surv., 61:6 (2006), 1167–1169 | DOI | MR

[2] Aubakirov T., Nursultanov E., “Interpolation theorem for stochastic processes”, Eurasian Math. J., 1:1 (2010), 8–16 | MR | Zbl

[3] Blasco O., Ruiz A., Vega L., “Non interpolation in Morrey–Campanato and block spaces”, Ann. Sc. Norm. Super. Pisa. Cl. Sci. Ser. 4, 28:1 (1999), 31–40 | MR | Zbl

[4] V. I. Burenkov and G. V. Guliev, “Necessary and sufficient conditions for the boundedness of the maximal operator in local Morrey-type spaces”, Dokl. Math., 68:1 (2003), 107–110 | MR | Zbl

[5] Burenkov V.I., Guliyev H.V., “Necessary and sufficient conditions for boundedness of the maximal operator in local Morrey-type spaces”, Stud. math., 163:2 (2004), 157–176 | DOI | MR | Zbl

[6] Burenkov V.I., Guliyev H.V., Guliyev V.S., “Necessary and sufficient conditions for the boundedness of fractional maximal operators in local Morrey-type spaces”, J. Comput. Appl. Math., 208:1 (2007), 280–301 | DOI | MR | Zbl

[7] V. I. Burenkov, V. S. Guliyev, and G. V. Guliyev, “Necessary and sufficient conditions for the boundedness of the fractional maximal operator in local Morrey-type spaces”, Dokl. Math., 74:1 (2006), 540–544 | DOI | MR | MR | Zbl

[8] Burenkov V.I., Chigambayeva D.K., Nursultanov E.D., “Marcinkiewicz-type interpolation theorem and estimates for convolutions for Morrey-type spaces”, Eurasian Math. J., 9:2 (2018), 82–88 | DOI | MR | Zbl

[9] Burenkov V.I., Chigambayeva D.K., Nursultanov E.D., “Marcinkiewicz-type interpolation theorem for Morrey-type spaces and its corollaries”, Complex Var. Elliptic Eqns., 65:1 (2020), 87–108 | DOI | MR | Zbl

[10] V. I. Burenkov and E. D. Nursultanov, “Description of interpolation spaces for local Morrey-type spaces”, Proc. Steklov Inst. Math., 269 (2010), 46–56 | DOI | MR | Zbl

[11] Burenkov V.I., Nursultanov E.D., “Interpolation theorems for nonlinear Urysohn integral operators in general Morrey-type spaces”, Eurasian Math. J., 11:4 (2020), 87–94 | DOI | MR | Zbl

[12] V. I. Burenkov, E. D. Nursultanov, and D. K. Chigambayeva, “Description of the interpolation spaces for a pair of local Morrey-type spaces and their generalizations”, Proc. Steklov Inst. Math., 284 (2014), 97–128 | DOI | MR | Zbl

[13] Calderón A.P., “Spaces between $L^1$ and $L^\infty $ and the theorem of Marcinkiewicz”, Stud. math., 26:3 (1966), 273–299 | DOI | MR | Zbl

[14] Campanato A., Murthy M.K.V., “Una generalizzazione del teorema di Riesz–Thorin”, Ann. Sc. Norm. Super. Pisa. Sci. Fis. Mat. Ser. 3, 19:1 (1965), 87–100 | MR | Zbl

[15] Kostyuchenko A.G., Nursultanov E.D., “Ob integralnykh operatorakh v $L_p$-prostranstvakh”, Fund. i prikl. matematika, 5:2 (1999), 475–491 | MR | Zbl

[16] M. A. Krasnoselskii, P. P. Zabreiko, E. I. Pustylnik, and P. E. Sobolevskii, Integral Operators in Spaces of Summable Functions, Noordhoff, Leyden, 1976 | MR | MR | Zbl

[17] Lemarié-Rieusset P.G., “The role of Morrey spaces in the study of Navier–Stokes and Euler equations”, Eurasian Math. J., 3:3 (2012), 62–93 | MR | Zbl

[18] Lemarié-Rieusset P.G., “Multipliers and Morrey spaces”, Potential Anal., 38:3 (2013), 741–752 | DOI | MR | Zbl

[19] Nursultanov E., Aubakirov T., “Interpolation methods for stochastic processes spaces”, Abstr. Appl. Anal., 2013 (2013), 152043 | DOI | MR | Zbl

[20] Nursultanov E., Tikhonov S., “Net spaces and boundedness of integral operators”, J. Geom. Anal., 21:4 (2011), 950–981 | DOI | MR | Zbl

[21] R. Oinarov and M. Otelbaev, “A criterion for a Urysohn operator to be a contraction”, Sov. Math., Dokl., 22 (1980), 832–835 | MR | Zbl

[22] M. Otelbaev and G. A. Suvorchenkova, “A necessary and sufficient condition for boundedness and continuity of a certain class of Uryson operators”, Sib. Math. J., 20:2 (1979), 307–310 | DOI | MR | MR | Zbl

[23] Peetre J., “On the theory of $\mathcal {L}_{p,\lambda }$ spaces”, J. Funct. Anal., 4:1 (1969), 71–87 | DOI | MR | Zbl

[24] Peetre J., “A new approach in interpolation spaces”, Stud. math., 34:1 (1970), 23–42 | DOI | MR | Zbl

[25] Ruiz A., Vega L., “Corrigenda to “Unique continuation for Schrödinger operators” and a remark on interpolation of Morrey spaces”, Publ. Mat., 39:2 (1995), 405–411 | DOI | MR | Zbl

[26] Stampacchia G., “$\mathcal {L}^{(p,\lambda )}$-spaces and interpolation”, Commun. Pure Appl. Math., 17:3 (1964), 293–306 | DOI | MR | Zbl

[27] Stein E.M., Weiss G., “Interpolation of operators with change of measures”, Trans. Amer. Math. Soc., 87 (1958), 159–172 | DOI | MR | Zbl