Voir la notice de l'article provenant de la source Math-Net.Ru
@article{TRSPY_2021_312_a3, author = {E. I. Berezhnoi}, title = {Sharp {Extrapolation} {Theorems} for {Local} {Morrey} {Spaces}}, journal = {Informatics and Automation}, pages = {82--97}, publisher = {mathdoc}, volume = {312}, year = {2021}, language = {ru}, url = {http://geodesic.mathdoc.fr/item/TRSPY_2021_312_a3/} }
E. I. Berezhnoi. Sharp Extrapolation Theorems for Local Morrey Spaces. Informatics and Automation, Function Spaces, Approximation Theory, and Related Problems of Analysis, Tome 312 (2021), pp. 82-97. http://geodesic.mathdoc.fr/item/TRSPY_2021_312_a3/
[1] E. I. Berezhnoi, “A sharp extrapolation theorem for Lorentz spaces”, Sib. Math. J., 54:3 (2013), 406–418 | DOI | MR | Zbl
[2] E. I. Berezhnoi, “Can Yano's extrapolation theorem be strengthened?”, Math. Notes, 49:2 (2015), 145–147 | MR | Zbl
[3] E. I. Berezhnoi, “A discrete version of local Morrey spaces”, Izv. Math., 81:1 (2017), 1–28 | DOI | MR | Zbl
[4] E. I. Berezhnoi, “Exact calculation of sums of the Lorentz spaces $\Lambda ^\alpha $ and applications”, Math. Notes, 104:5 (2018), 628–635 | DOI | MR | Zbl
[5] E. I. Berezhnoi, “Exact calculation of sums of cones in Lorentz spaces”, Funct. Anal. Appl., 52:2 (2018), 134–138 | DOI | MR | Zbl
[6] E. I. Berezhnoi, “Extremal extrapolation spaces”, Funct. Anal. Appl., 54:1 (2020), 1–6 | DOI | MR | Zbl
[7] E. I. Berezhnoi and A. A. Perfil'ev, “A sharp extrapolation theorem for operators”, Funct. Anal. Appl., 34:3 (2000), 211–213 | DOI | MR | Zbl
[8] Burenkov V.I., “Recent progress in studying the boundedness of classical operators of real analysis in general Morrey-type spaces. I”, Eurasian Math. J., 3:3 (2012), 11–32 | MR | Zbl
[9] Burenkov V.I., “Recent progress in studying the boundedness of classical operators of real analysis in general Morrey-type spaces. II”, Eurasian Math. J., 4:1 (2013), 21–45 | MR | Zbl
[10] V. I. Burenkov, E. D. Nursultanov, and D. K. Chigambayeva, “Description of the interpolation spaces for a pair of local Morrey-type spaces and their generalizations”, Proc. Steklov Inst. Math., 284 (2014), 97–128 | DOI | MR | Zbl
[11] Carro M.J., “On the range space of Yano's extrapolation theorem and new extrapolation estimates at infinity”, Publ. Mat. Barc., Extra (2002), 27–37 | DOI | MR | Zbl
[12] Fiorenza A., Gupta B., Jain P., “The maximal theorem for weighted Grand Lebesgue spaces”, Stud. math., 188:2 (2008), 123–133 | DOI | MR | Zbl
[13] Fiorenza A., Karadzhov G.E., “Grand and small Lebesgue spaces and their analogs”, Z. Anal. Anwend., 23:4 (2004), 657–681 | DOI | MR | Zbl
[14] Iwaniec T., Sbordone C., “On the integrability of the Jacobian under minimal hypotheses”, Arch. Ration. Mech. Anal., 119:2 (1992), 129–143 | DOI | MR | Zbl
[15] Jawerth B., Milman M., Extrapolation theory with applications, Mem. Amer. Math. Soc., 89, no. 440, Amer. Math. Soc., Providence, RI, 1991 | MR
[16] Karadzhov G.E., Milman M., “Extrapolation theory: New results and applications”, J. Approx. Theory, 133:1 (2005), 38–99 | DOI | MR | Zbl
[17] S. G. Kreĭn, Yu. I. Petunin, and E. M. Semenov, Interpolation of Linear Operators, Am. Math. Soc, Providence, RI, 1982 | MR | Zbl
[18] Kufner A., Maligranda L., Persson L.-E., The Hardy inequality: About its history and some related results, Vydavatelský Servis, Pilsen, 2007 | MR | Zbl
[19] Lindenstrauss J., Tzafriri L., Classical Banach spaces. I: Sequence spaces; II: Function spaces, Ergebn. Math. Grenzgeb., 92, 97, Springer, Berlin, 1977, 1979 | MR
[20] Milman M., Extrapolation and optimal decompositions: With applications to analysis, Lect. Nothes Math., 1580, Springer, Berlin, 1994 | DOI | MR | Zbl
[21] Morrey C.B., \textup {Jr.}, “On the solutions of quasi-linear elliptic partial differential equations”, Trans. Amer. Math. Soc., 43:1 (1938), 126–166 | DOI | MR
[22] Sbordone C., “Grand Sobolev spaces and their application to variational problems”, Matematiche, 51:2 (1996), 335–347 | MR | Zbl
[23] Yano S., “Notes on Fourier analysis. XXIX: An extrapolation theorem”, J. Math. Soc. Japan, 3:2 (1951), 296–305 | DOI | MR | Zbl
[24] A. Zygmund, Trigonometric Series, v. 2, Univ. Press, Cambridge, 1959 | MR | Zbl