Voir la notice de l'article provenant de la source Math-Net.Ru
@article{TRSPY_2021_312_a16, author = {Yu. N. Subbotin and N. V. Baidakova}, title = {Approximation of the {Derivatives} of a {Function} in {Lagrange} {Interpolation} on {Low-Dimensional} {Simplices}}, journal = {Informatics and Automation}, pages = {272--281}, publisher = {mathdoc}, volume = {312}, year = {2021}, language = {ru}, url = {http://geodesic.mathdoc.fr/item/TRSPY_2021_312_a16/} }
TY - JOUR AU - Yu. N. Subbotin AU - N. V. Baidakova TI - Approximation of the Derivatives of a Function in Lagrange Interpolation on Low-Dimensional Simplices JO - Informatics and Automation PY - 2021 SP - 272 EP - 281 VL - 312 PB - mathdoc UR - http://geodesic.mathdoc.fr/item/TRSPY_2021_312_a16/ LA - ru ID - TRSPY_2021_312_a16 ER -
%0 Journal Article %A Yu. N. Subbotin %A N. V. Baidakova %T Approximation of the Derivatives of a Function in Lagrange Interpolation on Low-Dimensional Simplices %J Informatics and Automation %D 2021 %P 272-281 %V 312 %I mathdoc %U http://geodesic.mathdoc.fr/item/TRSPY_2021_312_a16/ %G ru %F TRSPY_2021_312_a16
Yu. N. Subbotin; N. V. Baidakova. Approximation of the Derivatives of a Function in Lagrange Interpolation on Low-Dimensional Simplices. Informatics and Automation, Function Spaces, Approximation Theory, and Related Problems of Analysis, Tome 312 (2021), pp. 272-281. http://geodesic.mathdoc.fr/item/TRSPY_2021_312_a16/
[1] N. V. Baĭdakova, “On Jamet's estimates for the finite element method with interpolation at uniform nodes of a simplex”, Sib. Adv. Math., 28:1 (2018), 1–22 | DOI | MR | Zbl
[2] Brandts J., Korotov S., Křížek M., Simplicial partitions with applications to the finite element method, Springer, Cham, 2020 | MR | Zbl
[3] P. G. Ciarlet, The Finite Element Method for Elliptic Problems, North-Holland, Amsterdam, 1978 | MR | Zbl
[4] Ciarlet P.G., Raviart P.A., “General Lagrange and Hermite interpolation in $R^n$ with applications to finite element methods”, Arch. Ration. Mech. Anal., 46:3 (1972), 177–199 | DOI | MR | Zbl
[5] Hannukainen A., Korotov S., Křížek M., “On Synge-type angle condition for $d$-simplices”, Appl. Math., 62:1 (2017), 1–13 | DOI | MR | Zbl
[6] Jamet P., “Estimations d'erreur pour des éléments finis droits presque dégénérés”, RAIRO. Anal. Numér., 10:R1 (1976), 43–60 | MR | Zbl
[7] Khademi A., Korotov S., Vatne J.E, “On the generalization of the Synge–Křížek maximum angle condition for $d$-simplices”, J. Comput. Appl. Math., 358:1 (2019), 29–33 | DOI | MR | Zbl
[8] Křížek M., “On the maximum angle condition for linear tetrahedral elements”, SIAM J. Numer. Anal., 29:2 (1992), 513–520 | DOI | MR
[9] Nicolaides R.A., “On a class of finite elements generated by Lagrange interpolation”, SIAM J. Numer. Anal., 9:3 (1972), 435–445 | DOI | MR | Zbl
[10] Yu. N. Subbotin, “Dependence of estimates of a multidimensional piecewise polynomial approximation on the geometric characteristics of the triangulation”, Proc. Steklov Inst. Math., 189 (1990), 135–159 | MR | Zbl
[11] Synge J.L., The hypercircle in mathematical physics: A method for the approximate solution of boundary value problems, Univ. Press, Cambridge, 1957 | MR | Zbl