Approximation of the Derivatives of a Function in Lagrange Interpolation on Low-Dimensional Simplices
Informatics and Automation, Function Spaces, Approximation Theory, and Related Problems of Analysis, Tome 312 (2021), pp. 272-281
Voir la notice de l'article provenant de la source Math-Net.Ru
We address the problem of approximating the derivatives of a differentiable function of $m$ variables ($m=3,4$) by the derivatives of a polynomial on an $m$-simplex for the standard method of interpolation by Lagrange polynomials at the points of a uniform grid on this simplex. For the error of approximation of these derivatives by the derivatives of the interpolation polynomial, we obtain upper bounds expressed in terms of new geometric characteristics of the simplex. The proposed characteristics of the simplex are clear and easy to calculate.
Mots-clés :
multidimensional interpolation
Keywords: finite element method.
Keywords: finite element method.
@article{TRSPY_2021_312_a16,
author = {Yu. N. Subbotin and N. V. Baidakova},
title = {Approximation of the {Derivatives} of a {Function} in {Lagrange} {Interpolation} on {Low-Dimensional} {Simplices}},
journal = {Informatics and Automation},
pages = {272--281},
publisher = {mathdoc},
volume = {312},
year = {2021},
language = {ru},
url = {http://geodesic.mathdoc.fr/item/TRSPY_2021_312_a16/}
}
TY - JOUR AU - Yu. N. Subbotin AU - N. V. Baidakova TI - Approximation of the Derivatives of a Function in Lagrange Interpolation on Low-Dimensional Simplices JO - Informatics and Automation PY - 2021 SP - 272 EP - 281 VL - 312 PB - mathdoc UR - http://geodesic.mathdoc.fr/item/TRSPY_2021_312_a16/ LA - ru ID - TRSPY_2021_312_a16 ER -
%0 Journal Article %A Yu. N. Subbotin %A N. V. Baidakova %T Approximation of the Derivatives of a Function in Lagrange Interpolation on Low-Dimensional Simplices %J Informatics and Automation %D 2021 %P 272-281 %V 312 %I mathdoc %U http://geodesic.mathdoc.fr/item/TRSPY_2021_312_a16/ %G ru %F TRSPY_2021_312_a16
Yu. N. Subbotin; N. V. Baidakova. Approximation of the Derivatives of a Function in Lagrange Interpolation on Low-Dimensional Simplices. Informatics and Automation, Function Spaces, Approximation Theory, and Related Problems of Analysis, Tome 312 (2021), pp. 272-281. http://geodesic.mathdoc.fr/item/TRSPY_2021_312_a16/