Approximation of the Derivatives of a Function in Lagrange Interpolation on Low-Dimensional Simplices
Informatics and Automation, Function Spaces, Approximation Theory, and Related Problems of Analysis, Tome 312 (2021), pp. 272-281.

Voir la notice de l'article provenant de la source Math-Net.Ru

We address the problem of approximating the derivatives of a differentiable function of $m$ variables ($m=3,4$) by the derivatives of a polynomial on an $m$-simplex for the standard method of interpolation by Lagrange polynomials at the points of a uniform grid on this simplex. For the error of approximation of these derivatives by the derivatives of the interpolation polynomial, we obtain upper bounds expressed in terms of new geometric characteristics of the simplex. The proposed characteristics of the simplex are clear and easy to calculate.
Mots-clés : multidimensional interpolation
Keywords: finite element method.
@article{TRSPY_2021_312_a16,
     author = {Yu. N. Subbotin and N. V. Baidakova},
     title = {Approximation of the {Derivatives} of a {Function} in {Lagrange} {Interpolation} on {Low-Dimensional} {Simplices}},
     journal = {Informatics and Automation},
     pages = {272--281},
     publisher = {mathdoc},
     volume = {312},
     year = {2021},
     language = {ru},
     url = {http://geodesic.mathdoc.fr/item/TRSPY_2021_312_a16/}
}
TY  - JOUR
AU  - Yu. N. Subbotin
AU  - N. V. Baidakova
TI  - Approximation of the Derivatives of a Function in Lagrange Interpolation on Low-Dimensional Simplices
JO  - Informatics and Automation
PY  - 2021
SP  - 272
EP  - 281
VL  - 312
PB  - mathdoc
UR  - http://geodesic.mathdoc.fr/item/TRSPY_2021_312_a16/
LA  - ru
ID  - TRSPY_2021_312_a16
ER  - 
%0 Journal Article
%A Yu. N. Subbotin
%A N. V. Baidakova
%T Approximation of the Derivatives of a Function in Lagrange Interpolation on Low-Dimensional Simplices
%J Informatics and Automation
%D 2021
%P 272-281
%V 312
%I mathdoc
%U http://geodesic.mathdoc.fr/item/TRSPY_2021_312_a16/
%G ru
%F TRSPY_2021_312_a16
Yu. N. Subbotin; N. V. Baidakova. Approximation of the Derivatives of a Function in Lagrange Interpolation on Low-Dimensional Simplices. Informatics and Automation, Function Spaces, Approximation Theory, and Related Problems of Analysis, Tome 312 (2021), pp. 272-281. http://geodesic.mathdoc.fr/item/TRSPY_2021_312_a16/

[1] N. V. Baĭdakova, “On Jamet's estimates for the finite element method with interpolation at uniform nodes of a simplex”, Sib. Adv. Math., 28:1 (2018), 1–22 | DOI | MR | Zbl

[2] Brandts J., Korotov S., Křížek M., Simplicial partitions with applications to the finite element method, Springer, Cham, 2020 | MR | Zbl

[3] P. G. Ciarlet, The Finite Element Method for Elliptic Problems, North-Holland, Amsterdam, 1978 | MR | Zbl

[4] Ciarlet P.G., Raviart P.A., “General Lagrange and Hermite interpolation in $R^n$ with applications to finite element methods”, Arch. Ration. Mech. Anal., 46:3 (1972), 177–199 | DOI | MR | Zbl

[5] Hannukainen A., Korotov S., Křížek M., “On Synge-type angle condition for $d$-simplices”, Appl. Math., 62:1 (2017), 1–13 | DOI | MR | Zbl

[6] Jamet P., “Estimations d'erreur pour des éléments finis droits presque dégénérés”, RAIRO. Anal. Numér., 10:R1 (1976), 43–60 | MR | Zbl

[7] Khademi A., Korotov S., Vatne J.E, “On the generalization of the Synge–Křížek maximum angle condition for $d$-simplices”, J. Comput. Appl. Math., 358:1 (2019), 29–33 | DOI | MR | Zbl

[8] Křížek M., “On the maximum angle condition for linear tetrahedral elements”, SIAM J. Numer. Anal., 29:2 (1992), 513–520 | DOI | MR

[9] Nicolaides R.A., “On a class of finite elements generated by Lagrange interpolation”, SIAM J. Numer. Anal., 9:3 (1972), 435–445 | DOI | MR | Zbl

[10] Yu. N. Subbotin, “Dependence of estimates of a multidimensional piecewise polynomial approximation on the geometric characteristics of the triangulation”, Proc. Steklov Inst. Math., 189 (1990), 135–159 | MR | Zbl

[11] Synge J.L., The hypercircle in mathematical physics: A method for the approximate solution of boundary value problems, Univ. Press, Cambridge, 1957 | MR | Zbl