Leaky quantum structures
Informatics and Automation, Analysis and mathematical physics, Tome 311 (2020), pp. 123-139

Voir la notice de l'article provenant de la source Math-Net.Ru

The paper reviews spectral properties of a class of singular Schrödinger operators with the interaction supported by manifolds or complexes of codimension one, in particular, their relations to the geometric setting of the problem. We describe how they can be approximated by operators of other classes and how such approximations can be used. Furthermore, we present asymptotic expansions of the eigenvalues in terms of the parameters characterizing the coupling strength and geometric deformations. We also give an example illustrating the influence of a magnetic field of the Aharonov-Bohm type and describe briefly results about singular perturbation of Dirac operators.
Keywords: singular Schrödinger operators, codimension one manifolds, spectral properties, asymptotic expansions, Dirac operators.
@article{TRSPY_2020_311_a6,
     author = {Pavel Exner},
     title = {Leaky quantum structures},
     journal = {Informatics and Automation},
     pages = {123--139},
     publisher = {mathdoc},
     volume = {311},
     year = {2020},
     language = {ru},
     url = {http://geodesic.mathdoc.fr/item/TRSPY_2020_311_a6/}
}
TY  - JOUR
AU  - Pavel Exner
TI  - Leaky quantum structures
JO  - Informatics and Automation
PY  - 2020
SP  - 123
EP  - 139
VL  - 311
PB  - mathdoc
UR  - http://geodesic.mathdoc.fr/item/TRSPY_2020_311_a6/
LA  - ru
ID  - TRSPY_2020_311_a6
ER  - 
%0 Journal Article
%A Pavel Exner
%T Leaky quantum structures
%J Informatics and Automation
%D 2020
%P 123-139
%V 311
%I mathdoc
%U http://geodesic.mathdoc.fr/item/TRSPY_2020_311_a6/
%G ru
%F TRSPY_2020_311_a6
Pavel Exner. Leaky quantum structures. Informatics and Automation, Analysis and mathematical physics, Tome 311 (2020), pp. 123-139. http://geodesic.mathdoc.fr/item/TRSPY_2020_311_a6/