Recent Results in Several Complex Variables and Complex Geometry
Informatics and Automation, Analysis and mathematical physics, Tome 311 (2020), pp. 264-281

Voir la notice de l'article provenant de la source Math-Net.Ru

We first recall the background and contents of our recent solutions of the optimal $L^2$ extension problem and Demailly's strong openness conjecture on multiplier ideal sheaves and related results, and then present some new related results in several complex variables and complex geometry.
@article{TRSPY_2020_311_a15,
     author = {Xiangyu Zhou},
     title = {Recent {Results} in {Several} {Complex} {Variables} and {Complex} {Geometry}},
     journal = {Informatics and Automation},
     pages = {264--281},
     publisher = {mathdoc},
     volume = {311},
     year = {2020},
     language = {ru},
     url = {http://geodesic.mathdoc.fr/item/TRSPY_2020_311_a15/}
}
TY  - JOUR
AU  - Xiangyu Zhou
TI  - Recent Results in Several Complex Variables and Complex Geometry
JO  - Informatics and Automation
PY  - 2020
SP  - 264
EP  - 281
VL  - 311
PB  - mathdoc
UR  - http://geodesic.mathdoc.fr/item/TRSPY_2020_311_a15/
LA  - ru
ID  - TRSPY_2020_311_a15
ER  - 
%0 Journal Article
%A Xiangyu Zhou
%T Recent Results in Several Complex Variables and Complex Geometry
%J Informatics and Automation
%D 2020
%P 264-281
%V 311
%I mathdoc
%U http://geodesic.mathdoc.fr/item/TRSPY_2020_311_a15/
%G ru
%F TRSPY_2020_311_a15
Xiangyu Zhou. Recent Results in Several Complex Variables and Complex Geometry. Informatics and Automation, Analysis and mathematical physics, Tome 311 (2020), pp. 264-281. http://geodesic.mathdoc.fr/item/TRSPY_2020_311_a15/