Mixed Type Hermite--Pad\'e Approximants for a Nikishin System
Informatics and Automation, Analysis and mathematical physics, Tome 311 (2020), pp. 213-227

Voir la notice de l'article provenant de la source Math-Net.Ru

We consider the problem of mixed type Hermite–Padé approximants and prove that the Nikishin system is perfect for this problem. Using the method of a vector equilibrium problem, we find weak asymptotics and prove the convergence of the approximants along any rays in the index table. We also present an equivalent statement in the form of a matrix Riemann–Hilbert problem.
Keywords: mixed type Hermite–Padé approximants, Nikishin system, perfect system, vector logarithmic-potential equilibrium problem, matrix Riemann–Hilbert problem.
Mots-clés : convergence of rational approximants
@article{TRSPY_2020_311_a11,
     author = {V. G. Lysov},
     title = {Mixed {Type} {Hermite--Pad\'e} {Approximants} for a {Nikishin} {System}},
     journal = {Informatics and Automation},
     pages = {213--227},
     publisher = {mathdoc},
     volume = {311},
     year = {2020},
     language = {ru},
     url = {http://geodesic.mathdoc.fr/item/TRSPY_2020_311_a11/}
}
TY  - JOUR
AU  - V. G. Lysov
TI  - Mixed Type Hermite--Pad\'e Approximants for a Nikishin System
JO  - Informatics and Automation
PY  - 2020
SP  - 213
EP  - 227
VL  - 311
PB  - mathdoc
UR  - http://geodesic.mathdoc.fr/item/TRSPY_2020_311_a11/
LA  - ru
ID  - TRSPY_2020_311_a11
ER  - 
%0 Journal Article
%A V. G. Lysov
%T Mixed Type Hermite--Pad\'e Approximants for a Nikishin System
%J Informatics and Automation
%D 2020
%P 213-227
%V 311
%I mathdoc
%U http://geodesic.mathdoc.fr/item/TRSPY_2020_311_a11/
%G ru
%F TRSPY_2020_311_a11
V. G. Lysov. Mixed Type Hermite--Pad\'e Approximants for a Nikishin System. Informatics and Automation, Analysis and mathematical physics, Tome 311 (2020), pp. 213-227. http://geodesic.mathdoc.fr/item/TRSPY_2020_311_a11/