On Realization of Topological Conjugacy Classes of Morse--Smale Cascades on the Sphere $S^n$
Informatics and Automation, Selected issues of mathematics and mechanics, Tome 310 (2020), pp. 119-134
Voir la notice de l'article provenant de la source Math-Net.Ru
We consider the class $G(S^n)$ of orientation-preserving Morse–Smale diffeomorphisms defined on the sphere $S^n$ of dimension $n\geq 4$ under the assumption that the invariant manifolds of different saddle periodic points are disjoint. For diffeomorphisms in this class, we describe an algorithm for constructing representatives of all topological conjugacy classes.
@article{TRSPY_2020_310_a7,
author = {V. Z. Grines and E. Ya. Gurevich and V. S. Medvedev},
title = {On {Realization} of {Topological} {Conjugacy} {Classes} of {Morse--Smale} {Cascades} on the {Sphere} $S^n$},
journal = {Informatics and Automation},
pages = {119--134},
publisher = {mathdoc},
volume = {310},
year = {2020},
language = {ru},
url = {http://geodesic.mathdoc.fr/item/TRSPY_2020_310_a7/}
}
TY - JOUR AU - V. Z. Grines AU - E. Ya. Gurevich AU - V. S. Medvedev TI - On Realization of Topological Conjugacy Classes of Morse--Smale Cascades on the Sphere $S^n$ JO - Informatics and Automation PY - 2020 SP - 119 EP - 134 VL - 310 PB - mathdoc UR - http://geodesic.mathdoc.fr/item/TRSPY_2020_310_a7/ LA - ru ID - TRSPY_2020_310_a7 ER -
%0 Journal Article %A V. Z. Grines %A E. Ya. Gurevich %A V. S. Medvedev %T On Realization of Topological Conjugacy Classes of Morse--Smale Cascades on the Sphere $S^n$ %J Informatics and Automation %D 2020 %P 119-134 %V 310 %I mathdoc %U http://geodesic.mathdoc.fr/item/TRSPY_2020_310_a7/ %G ru %F TRSPY_2020_310_a7
V. Z. Grines; E. Ya. Gurevich; V. S. Medvedev. On Realization of Topological Conjugacy Classes of Morse--Smale Cascades on the Sphere $S^n$. Informatics and Automation, Selected issues of mathematics and mechanics, Tome 310 (2020), pp. 119-134. http://geodesic.mathdoc.fr/item/TRSPY_2020_310_a7/