On Integrability of Dynamical Systems
Informatics and Automation, Selected issues of mathematics and mechanics, Tome 310 (2020), pp. 78-85

Voir la notice de l'article provenant de la source Math-Net.Ru

A classical dynamical system may have smooth integrals of motion and not have analytic ones; i.e., the integrability property depends on the category of smoothness. Recently it has been shown that any quantum dynamical system is completely integrable in the category of Hilbert spaces and, moreover, is unitarily equivalent to a set of classical harmonic oscillators. The same statement holds for classical dynamical systems in the Koopman formulation. Here we construct higher conservation laws in an explicit form for the Schrödinger equation in the multidimensional space under various fairly wide conditions on the potential.
@article{TRSPY_2020_310_a4,
     author = {I. V. Volovich},
     title = {On {Integrability} of {Dynamical} {Systems}},
     journal = {Informatics and Automation},
     pages = {78--85},
     publisher = {mathdoc},
     volume = {310},
     year = {2020},
     language = {ru},
     url = {http://geodesic.mathdoc.fr/item/TRSPY_2020_310_a4/}
}
TY  - JOUR
AU  - I. V. Volovich
TI  - On Integrability of Dynamical Systems
JO  - Informatics and Automation
PY  - 2020
SP  - 78
EP  - 85
VL  - 310
PB  - mathdoc
UR  - http://geodesic.mathdoc.fr/item/TRSPY_2020_310_a4/
LA  - ru
ID  - TRSPY_2020_310_a4
ER  - 
%0 Journal Article
%A I. V. Volovich
%T On Integrability of Dynamical Systems
%J Informatics and Automation
%D 2020
%P 78-85
%V 310
%I mathdoc
%U http://geodesic.mathdoc.fr/item/TRSPY_2020_310_a4/
%G ru
%F TRSPY_2020_310_a4
I. V. Volovich. On Integrability of Dynamical Systems. Informatics and Automation, Selected issues of mathematics and mechanics, Tome 310 (2020), pp. 78-85. http://geodesic.mathdoc.fr/item/TRSPY_2020_310_a4/