Local Adiabatic Invariants Near a Homoclinic Set of a Slow--Fast Hamiltonian System
Informatics and Automation, Selected issues of mathematics and mechanics, Tome 310 (2020), pp. 19-32

Voir la notice de l'article provenant de la source Math-Net.Ru

In slow–fast systems, fast variables change at a rate of the order of one, and slow variables, at a rate of the order of $\varepsilon \ll 1$. The system obtained for $\varepsilon =0$ is said to be frozen. If the frozen (fast) system has one degree of freedom, then in the region where the level curves of the frozen Hamiltonian are closed there exists an adiabatic invariant. A. Neishtadt showed that near a separatrix of the frozen system the adiabatic invariant exhibits quasirandom jumps of order $\varepsilon $. In this paper we partially extend Neishtadt's result to the multidimensional case. We show that if the frozen system has a hyperbolic critical point possessing several transverse homoclinics, then for small $\varepsilon $ there exist trajectories shadowing homoclinic chains. The slow variables evolve in a quasirandom way, shadowing trajectories of systems with Hamiltonians similar to adiabatic invariants. This paper extends the work of V. Gelfreich and D. Turaev, who considered similar phenomena away from critical points of the frozen Hamiltonian.
@article{TRSPY_2020_310_a1,
     author = {Sergey V. Bolotin},
     title = {Local {Adiabatic} {Invariants} {Near} a {Homoclinic} {Set} of a {Slow--Fast} {Hamiltonian} {System}},
     journal = {Informatics and Automation},
     pages = {19--32},
     publisher = {mathdoc},
     volume = {310},
     year = {2020},
     language = {ru},
     url = {http://geodesic.mathdoc.fr/item/TRSPY_2020_310_a1/}
}
TY  - JOUR
AU  - Sergey V. Bolotin
TI  - Local Adiabatic Invariants Near a Homoclinic Set of a Slow--Fast Hamiltonian System
JO  - Informatics and Automation
PY  - 2020
SP  - 19
EP  - 32
VL  - 310
PB  - mathdoc
UR  - http://geodesic.mathdoc.fr/item/TRSPY_2020_310_a1/
LA  - ru
ID  - TRSPY_2020_310_a1
ER  - 
%0 Journal Article
%A Sergey V. Bolotin
%T Local Adiabatic Invariants Near a Homoclinic Set of a Slow--Fast Hamiltonian System
%J Informatics and Automation
%D 2020
%P 19-32
%V 310
%I mathdoc
%U http://geodesic.mathdoc.fr/item/TRSPY_2020_310_a1/
%G ru
%F TRSPY_2020_310_a1
Sergey V. Bolotin. Local Adiabatic Invariants Near a Homoclinic Set of a Slow--Fast Hamiltonian System. Informatics and Automation, Selected issues of mathematics and mechanics, Tome 310 (2020), pp. 19-32. http://geodesic.mathdoc.fr/item/TRSPY_2020_310_a1/