On a Problem of Multidimensional Tauberian Theory
Informatics and Automation, Modern problems of mathematical and theoretical physics, Tome 309 (2020), pp. 110-119

Voir la notice de l'article provenant de la source Math-Net.Ru

In many Tauberian theorems, the asymptotic properties of functions were investigated with respect to a predefined function (usually in the scale of regularly varying functions). In this paper, we address an alternative problem: Given a generalized function, does it have asymptotics with respect to some regularly varying function? We find necessary and sufficient conditions for the existence of quasiasymptotics of those generalized functions whose Laplace transforms have a bounded argument in a tube domain over the positive orthant. Moreover, we point out a regularly varying function with respect to which quasiasymptotics exists. It turns out that the modulus of a holomorphic function in a tube domain over the positive orthant in the purely imaginary subspace on rays emanating from the origin behaves as a regularly varying function. We use the obtained results to find the quasiasymptotics of the generalized Cauchy problem for convolution equations whose kernels are passive operators.
Keywords: generalized functions, quasiasymptotics, Abelian and Tauberian theorems, regularly varying functions, holomorphic functions of bounded argument.
@article{TRSPY_2020_309_a7,
     author = {Yu. N. Drozhzhinov},
     title = {On a {Problem} of {Multidimensional} {Tauberian} {Theory}},
     journal = {Informatics and Automation},
     pages = {110--119},
     publisher = {mathdoc},
     volume = {309},
     year = {2020},
     language = {ru},
     url = {http://geodesic.mathdoc.fr/item/TRSPY_2020_309_a7/}
}
TY  - JOUR
AU  - Yu. N. Drozhzhinov
TI  - On a Problem of Multidimensional Tauberian Theory
JO  - Informatics and Automation
PY  - 2020
SP  - 110
EP  - 119
VL  - 309
PB  - mathdoc
UR  - http://geodesic.mathdoc.fr/item/TRSPY_2020_309_a7/
LA  - ru
ID  - TRSPY_2020_309_a7
ER  - 
%0 Journal Article
%A Yu. N. Drozhzhinov
%T On a Problem of Multidimensional Tauberian Theory
%J Informatics and Automation
%D 2020
%P 110-119
%V 309
%I mathdoc
%U http://geodesic.mathdoc.fr/item/TRSPY_2020_309_a7/
%G ru
%F TRSPY_2020_309_a7
Yu. N. Drozhzhinov. On a Problem of Multidimensional Tauberian Theory. Informatics and Automation, Modern problems of mathematical and theoretical physics, Tome 309 (2020), pp. 110-119. http://geodesic.mathdoc.fr/item/TRSPY_2020_309_a7/