Voir la notice de l'article provenant de la source Math-Net.Ru
@article{TRSPY_2020_309_a3, author = {I. L. Buchbinder and A. P. Isaev and S. A. Fedoruk}, title = {Massless {Infinite} {Spin} {(Super)particles} and {Fields}}, journal = {Informatics and Automation}, pages = {54--65}, publisher = {mathdoc}, volume = {309}, year = {2020}, language = {ru}, url = {http://geodesic.mathdoc.fr/item/TRSPY_2020_309_a3/} }
I. L. Buchbinder; A. P. Isaev; S. A. Fedoruk. Massless Infinite Spin (Super)particles and Fields. Informatics and Automation, Modern problems of mathematical and theoretical physics, Tome 309 (2020), pp. 54-65. http://geodesic.mathdoc.fr/item/TRSPY_2020_309_a3/
[1] Alkalaev K., Chekmenev A., Grigoriev M., “Unified formulation for helicity and continuous spin fermionic fields”, J. High Energy Phys., 2018:11 (2018), 050 ; arXiv: 1808.09385 | MR | MR
[2] Alkalaev K.B., Grigoriev M.A., “Continuous spin fields of mixed-symmetry type”, J. High Energy Phys., 2018:03 (2018), 030 ; arXiv: 1712.02317 | MR | MR
[3] Bargmann V., Wigner E.P., “Group theoretical discussion of relativistic wave equations”, Proc. Natl. Acad. Sci. USA, 34 (1948), 211–223 | MR | Zbl
[4] Bekaert X., Boulanger N., The unitary representations of the Poincaré group in any spacetime dimension, E-print, 2006, arXiv: hep-th/0611263 | Zbl
[5] Bekaert X., Cnockaert S., Iazeolla C., Vasiliev M.A., “Nonlinear higher spin theories in various dimensions”, Higher spin gauge theories, Proc. 1st Solvay Workshop (May 12–14, 2004, Brussels), ed. by R. Argurio et al., Int. Solvay Inst. Phys. Chem., Brussels, 2006, 132–197; arXiv: hep-th/0503128 | Zbl
[6] Bekaert X., Mourad J., “The continuous spin limit of higher spin field equations”, J. High Energy Phys., 2006:01 (2006), 115 ; arXiv: hep-th/0509092. | MR | Zbl
[7] Bekaert X., Najafizadeh M., Setare M.R., “A gauge field theory of fermionic continuous-spin particles”, Phys. Lett. B, 760 (2016), 320–323 ; arXiv: 1506.00973 | Zbl
[8] Bekaert X., Skvortsov E.D., “Elementary particles with continuous spin”, Int. J. Mod. Phys. A, 32:23–24 (2017), 1730019 ; arXiv: 1708.01030 | Zbl
[9] Bengtsson A.K.H., “BRST theory for continuous spin”, J. High Energy Phys., 2013:10 (2013), 108 ; arXiv: 1303.3799
[10] Brink L., Khan A.M., Ramond P., Xiong X., “Continuous spin representations of the Poincaré and super-Poincaré groups”, J. Math. Phys., 43:12 (2002), 6279–6295 ; arXiv: hep-th/0205145. | MR | Zbl
[11] Buchbinder I.L., Fedoruk S., Isaev A.P., “Twistorial and space–time descriptions of massless infinite spin (super)particles and fields”, Nucl. Phys. B, 945 (2019), 114660 ; arXiv: 1903.07947 | MR | Zbl
[12] Buchbinder I.L., Fedoruk S., Isaev A.P., Rusnak A., “Model of massless relativistic particle with continuous spin and its twistorial description”, J. High Energy Phys., 2018:07 (2018), 031 ; arXiv: 1805.09706 | MR
[13] Buchbinder I.L., Gates S.J., Jr., Koutrolikos K., “Superfield continuous spin equations of motion”, Phys. Lett. B, 793 (2019), 445–450 ; arXiv: 1903.08631 | MR | Zbl
[14] Buchbinder I.L., Krykhtin V.A., “Gauge invariant Lagrangian construction for massive bosonic higher spin fields in D dimensions”, Nucl. Phys. B, 727:3 (2005), 537–563 ; arXiv: hep-th/0505092 | MR | Zbl
[15] Buchbinder I.L., Krykhtin V.A., Pashnev A., “BRST approach to Lagrangian construction for fermionic massless higher spin fields”, Nucl. Phys. B, 711:1–2 (2005), 367–391 ; arXiv: hep-th/0410215 | MR | Zbl
[16] Buchbinder I.L., Krykhtin V.A., Takata H., “BRST approach to Lagrangian construction for bosonic continuous spin field”, Phys. Lett. B, 785 (2018), 315–319 ; arXiv: 1806.01640 | Zbl
[17] Buchbinder I.L., Kuzenko S.M., Ideas and methods of supersymmetry and supergravity, or a walk through superspace, Inst. Phys., Bristol, 1998 | MR | Zbl
[18] Iverson G.J., Mack G., “Quantum fields and interactions of massless particles: The continuous spin case”, Ann. Phys., 64:1 (1971), 211–253 | MR | Zbl
[19] Khabarov M.V., Zinoviev Yu.M., “Infinite (continuous) spin fields in the frame-like formalism”, Nucl. Phys. B, 928 (2018), 182–216 ; arXiv: 1711.08223 | MR | Zbl
[20] Metsaev R.R., “Continuous spin gauge field in (A)dS space”, Phys. Lett. B, 767 (2017), 458–464 ; arXiv: 1610.00657 | MR | Zbl
[21] Metsaev R.R., “Fermionic continuous spin gauge field in (A)dS space”, Phys. Lett. B, 773 (2017), 135–141 ; arXiv: 1703.05780 | MR | Zbl
[22] Metsaev R.R., “BRST-BV approach to continuous-spin field”, Phys. Lett. B, 781 (2018), 568–573 ; arXiv: 1803.08421 | Zbl
[23] Metsaev R.R., “Cubic interaction vertices for massive/massless continuous-spin fields and arbitrary spin fields”, J. High Energy Phys., 2018:12 (2018), 055 ; arXiv: 1809.09075 | MR
[24] Metsaev R.R., “Light-cone continuous-spin field in AdS space”, Phys. Lett. B, 793 (2019), 134–140 ; arXiv: 1903.10495 | MR | Zbl
[25] Mund J., Schroer B., Yngvason J., “String-localized quantum fields from Wigner representations”, Phys. Lett. B, 596:1–2 (2004), 156–162 ; arXiv: math-ph/0402043 | MR | Zbl
[26] Penrose R., “Twistor algebra”, J. Math. Phys., 8:2 (1967), 345–366 | MR | Zbl
[27] Penrose R., MacCallum M.A.H., “Twistor theory: An approach to the quantisation of fields and space–time”, Phys. Rep., 6:4 (1972), 241–315 | MR
[28] Penrose R., Rindler W., Spinors and space–time, v. 2, Spinor and twistor methods in space–time geometry, Cambridge Univ. Press, Cambridge, 1986 | MR
[29] Rivelles V.O., “Gauge theory formulations for continuous and higher spin fields”, Phys. Rev. D, 91:12 (2015), 125035 ; arXiv: 1408.3576 | MR | Zbl
[30] Rivelles V.O., A gauge field theory for continuous spin tachyons, E-print, 2018, arXiv: 1807.01812 | Zbl
[31] Schuster P., Toro N., “On the theory of continuous-spin particles: Wavefunctions and soft-factor scattering amplitudes”, J. High Energy Phys., 2013:09 (2013), 104 ; arXiv: 1302.1198 | MR | Zbl
[32] Schuster P., Toro N., “On the theory of continuous-spin particles: Helicity correspondence in radiation and forces”, J. High Energy Phys., 2013:09 (2013), 105 ; arXiv: 1302.1577 | MR | Zbl
[33] Schuster P., Toro N., “A gauge field theory of continuous-spin particles”, J. High Energy Phys., 2013:10 (2013), 061 ; arXiv: 1302.3225 | MR | Zbl
[34] Schuster P., Toro N., “Continuous-spin particle field theory with helicity correspondence”, Phys. Rev. D, 91:2 (2015), 025023 ; arXiv: 1404.0675
[35] A. A. Slavnov, “Ward identities in gauge theories”, Theor. Math. Phys., 10:2 (1972), 99–104
[36] A. A. Slavnov, “Invariant regularization of gauge theories”, Theor. Math. Phys., 13:2 (1972), 1064–1066
[37] Vasiliev M.A., “Consistent equations for interacting massless fields of all spins in the first order in curvatures”, Ann. Phys., 190:1 (1989), 59–106 | MR
[38] Vasiliev M.A., “Algebraic aspects of the higher-spin problem”, Phys. Lett. B, 257:1–2 (1991), 111–118 | MR
[39] Vasiliev M.A., “More on equations of motion for interacting massless fields of all spins in $3+1$ dimensions”, Phys. Lett. B, 285:3 (1992), 225–234 | MR
[40] Vasiliev M.A., “Progress in higher spin gauge theories”, Quantization, gauge theory, and strings, Proc. Int. Conf. dedicated to the memory of E. Fradkin, v. 1, ed. by A. Semikhatov, M. Vasiliev, V. Zaikin, Scientific World, Moscow, 2001, 452–472 ; arXiv: hep-th/0104246 | MR
[41] Vasiliev M.A., “Relativity, causality, locality, quantization and duality in the $Sp(2M)$ invariant generalized space–time”, Multiple facets of quantization and supersymmetry, Michael Marinov memorial volume, ed. by M. Olshanetsky, A. Vainshtein, World Scientific, Singapore, 2002, 826–872 ; arXiv: hep-th/0111119. | MR | Zbl
[42] Vasiliev M.A., From Coxeter higher-spin theories to strings and tensor models, E-print, 2018, arXiv: 1804.06520 | MR
[43] Wess J., Bagger J., Supersymmetry and supergravity, Princeton Univ. Press, Princeton, NJ, 1992 | MR
[44] Wigner E., “On unitary representations of the inhomogeneous Lorentz group”, Ann. Math. Ser. 2, 40:1 (1939), 149–204 | MR
[45] Wigner E.P., “Relativistische Wellengleichungen”, Z. Phys., 124 (1948), 665–684 | MR | Zbl
[46] Zinoviev Yu.M., “Infinite spin fields in $d=3$ and beyond”, Universe, 3:3 (2017), 63 ; arXiv: 1707.08832