@article{TRSPY_2020_309_a21,
author = {B. L. Voronov},
title = {Verification of {Spectral} {Analysis} of a {Self-adjoint} {Differential} {Operator} {{\textquotedblleft}Following} {Landau} and {Lifshitz{\textquotedblright}} by {Means} of {Its} {Green} {Function}},
journal = {Informatics and Automation},
pages = {320--337},
year = {2020},
volume = {309},
language = {ru},
url = {http://geodesic.mathdoc.fr/item/TRSPY_2020_309_a21/}
}
TY - JOUR AU - B. L. Voronov TI - Verification of Spectral Analysis of a Self-adjoint Differential Operator “Following Landau and Lifshitz” by Means of Its Green Function JO - Informatics and Automation PY - 2020 SP - 320 EP - 337 VL - 309 UR - http://geodesic.mathdoc.fr/item/TRSPY_2020_309_a21/ LA - ru ID - TRSPY_2020_309_a21 ER -
%0 Journal Article %A B. L. Voronov %T Verification of Spectral Analysis of a Self-adjoint Differential Operator “Following Landau and Lifshitz” by Means of Its Green Function %J Informatics and Automation %D 2020 %P 320-337 %V 309 %U http://geodesic.mathdoc.fr/item/TRSPY_2020_309_a21/ %G ru %F TRSPY_2020_309_a21
B. L. Voronov. Verification of Spectral Analysis of a Self-adjoint Differential Operator “Following Landau and Lifshitz” by Means of Its Green Function. Informatics and Automation, Modern problems of mathematical and theoretical physics, Tome 309 (2020), pp. 320-337. http://geodesic.mathdoc.fr/item/TRSPY_2020_309_a21/
[1] N. I. Akhiezer and I. M. Glazman, Theory of Linear Operators in Hilbert Space, Nauka, Moscow, 1966 | MR | MR | Zbl
[2] Pitman, Boston, 1981 | MR | MR | Zbl
[3] Gitman D.M., Tyutin I.V., Voronov B.L., Self-adjoint extensions in quantum mechanics: General theory and applications to Schrödinger and Dirac equations with singular potentials, Prog. Math. Phys., 62, Birkhäuser, New York, 2012 | MR | Zbl
[4] L. D. Landau and E. M. Lifshitz, Quantum Mechanics: Non-Relativistic Theory, Nauka, Moscow, 1963 | MR | MR
[5] Pergamon Press, Oxford, 1977 | MR | MR
[6] M. A. Naimark, Linear Differential Operators, 2nd ed., Nauka, Moscow, 1969 | MR | MR | Zbl | Zbl
[7] Linear Differential Operators, Part I: Elementary Theory of Linear Differential Operators; Part II: Linear Differential Operators in Hilbert Space, F. Ungar Publ. Co., New York, 1967, 1968 | MR | MR | Zbl | Zbl